Brown and colleagues (Nature 1993) have cloned a novel calcium-sensing receptor (CaR) which is a member of the G protein-coupled receptor superfamily similar in structure to the metabotropic glutamate receptors. The CaR is expressed in a limited range of cell types including kidney, brain, thyroid C cells, and most prominently parathyroid cells. Mutations in the CaR identified in the human genetic disorder familial hypocalciuric hypocalcemia provide strong evidence for the physiologic importance of the receptor in calcium sensing generally and in regulation of parathyroid hormone secretion by extracellular ionized calcium in particular. We are studying several aspects of the receptor's structure and function. We have raised polyclonal antisera to several synthetic peptides corresponding to sequences in the large extracellular domain. These recognize the receptor on western blots and should be useful for a wide variety of studies. Development of monoclonal antibodies is planned with the long-range goal of being used as imaging reagents for parathyroid tumors in patients with failed neck explorations. We are also studying the coupling of the receptor to G proteins using transfection techniques, and by defining the normal complement of G protein alpha subunits in parathyroid cells.

Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1995
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Goebel, S U; Peghini, P L; Goldsmith, P K et al. (2000) Expression of the calcium-sensing receptor in gastrinomas. J Clin Endocrinol Metab 85:4131-7
Hauache, O M; Hu, J; Ray, K et al. (2000) Effects of a calcimimetic compound and naturally activating mutations on the human Ca2+ receptor and on Ca2+ receptor/metabotropic glutamate chimeric receptors. Endocrinology 141:4156-63
Spiegel, A M (2000) G protein defects in signal transduction. Horm Res 53 Suppl 3:17-22
Hauache, O M; Hu, J; Ray, K et al. (2000) Functional interactions between the extracellular domain and the seven-transmembrane domain in Ca2+ receptor activation. Endocrine 13:63-70
Hu, J; Hauache, O; Spiegel, A M (2000) Human Ca2+ receptor cysteine-rich domain. Analysis of function of mutant and chimeric receptors. J Biol Chem 275:16382-9
Zhao, X M; Hauache, O; Goldsmith, P K et al. (1999) A missense mutation in the seventh transmembrane domain constitutively activates the human Ca2+ receptor. FEBS Lett 448:180-4
Goldsmith, P K; Fan, G F; Ray, K et al. (1999) Expression, purification, and biochemical characterization of the amino-terminal extracellular domain of the human calcium receptor. J Biol Chem 274:11303-9
Spiegel, A M (1999) Hormone resistance caused by mutations in G proteins and G protein-coupled receptors. J Pediatr Endocrinol Metab 12 Suppl 1:303-9
Ray, K; Hauschild, B C; Steinbach, P J et al. (1999) Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca(2+) receptor critical for dimerization. Implications for function of monomeric Ca(2+) receptor. J Biol Chem 274:27642-50