Sphingolipids are important mediators and regulators of cell signaling pathways. Our studies have focused on the actions of two classes of sphingolipids represented by glycosphingolipids (GSLs) and sphingosine-1-phosphate. Our work is aimed at defining the normal functions of these sphingolipids and understanding their roles in disease processes. GSLs are found in the outer leaflet of the plasma membrane and are concentrated in specialized signaling structures. They are particularly abundant in neuronal cells in the form of gangliosides (sialic acid containing GSLs). Through genetic disruption of genes that encode synthetic enzymes for GSLs, we have created a series of mice that express limited glycosphingolipid structures. We are using these mice to discover the functions of GSLs. When the cellular machinery responsible for GSL degradation is defective, GSL storage diseases result in which profound neurodegeneration occurs. Examples are Tay-Sachs, Sandhoff and Gaucher diseases. We are attempting to understand how the accumulation of GSLs cause neurodegeneration through the construction of animal models of the diseases. Our major accomplishments this year include a demonstration the expanded macrophage/microglial population in the brain of Sandhoff disease mice is compounded by the infiltration of cells from the periphery. Coincident with the cellular infiltration was an increased expression of macrophage-inflammatory protein 1alpha (MIP-1alpha), a leukocyte chemokine, in astrocytes. Deletion of MIP-1alpha expression resulted in a substantial decrease in infiltration and macrophage/microglial-associated pathology together with neuronal apoptosis in Sandhoff disease mice. These mice without MIP-1alpha showed improved neurologic status and a longer lifespan. The results indicate that the pathogenesis of Sandhoff disease involves an increase in MIP-1alpha that induces monocytes to infiltrate the brain, expand the activated macrophage/microglial population, and trigger apoptosis of neurons, resulting in a rapid neurodegenerative course We also continued our studies on the G-protein coupled receptor for sphingosine-1-phosphate, S1P1. To determine the precise role of the S1P1 receptor on T-cells, we established a T-cell-specific S1P1 knock-out mouse. The mutant mice showed a block in the egress of mature T-cells into the periphery. The expression of the S1P1 receptor was up-regulated in mature thymocytes, and its deletion altered the chemotactic responses of thymocytes to sphingosine 1-phosphate. The results indicated that the expression of the S1P1 receptor on T-cells controls their exit from the thymus and entry into the blood and, thus, has a central role in regulating the numbers of peripheral T-cells..

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Intramural Research (Z01)
Project #
1Z01DK056000-06
Application #
6984021
Study Section
(GDDB)
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2004
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Olivera, Ana; Urtz, Nicole; Mizugishi, Kiyomi et al. (2006) IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 281:2515-25
Venkataraman, Krishnan; Thangada, Shobha; Michaud, Jason et al. (2006) Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem J 397:461-71
Michaud, Jason; Kohno, Masataka; Proia, Richard L et al. (2006) Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Lett 580:4607-12
Kohno, Masataka; Momoi, Michiko; Oo, Myat Lin et al. (2006) Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol 26:7211-23
Kono, Mari; Dreier, Jennifer L; Ellis, Jessica M et al. (2006) Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 281:7324-31
Lo, Charles G; Xu, Ying; Proia, Richard L et al. (2005) Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J Exp Med 201:291-301
Osawa, Yosuke; Hannun, Yusuf A; Proia, Richard L et al. (2005) Roles of AKT and sphingosine kinase in the antiapoptotic effects of bile duct ligation in mouse liver. Hepatology 42:1320-8
Wu, Yun-Ping; Mizukami, Hiroki; Matsuda, Junko et al. (2005) Apoptosis accompanied by up-regulation of TNF-alpha death pathway genes in the brain of Niemann-Pick type C disease. Mol Genet Metab 84:9-17
Sandhoff, Roger; Geyer, Rudolf; Jennemann, Richard et al. (2005) Novel class of glycosphingolipids involved in male fertility. J Biol Chem 280:27310-8
Fujitani, Masashi; Kawai, Hiromichi; Proia, Richard L et al. (2005) Binding of soluble myelin-associated glycoprotein to specific gangliosides induces the association of p75NTR to lipid rafts and signal transduction. J Neurochem 94:15-21

Showing the most recent 10 out of 41 publications