We have developed a technique called quantitative electron spectroscopic tomography (QuEST) for imaging the three-dimensional distribution of specific chemical elements in cells. A 300 kV field-emission transmission electron microscope (TEM) equipped with an advanced imaging filter is used to collect a series of 2-D elemental maps for a range of specimen tilt angles. Acquisition is controlled by means of flexible computer scripts, which enable correction for specimen drift and defocus between successive tilt angles. Projected 2-D elemental distributions are obtained by acquiring images above and below characteristic core-edges in the energy-loss spectrum and by subtracting the extrapolated background intensity at each pixel. We have implemented a dual-axis simultaneous iterative reconstruction technique (SIRT) to reconstruct the 3-D elemental distribution. By applying a thickness correction algorithm that takes into account plural inelastic scattering, and by incorporating scattering cross sections for excitation of core-shell electrons, we have shown that it is possible to quantify the elemental distributions in terms of the number of atoms per voxel. By using correlative light microscopy and 3-D phosphorus imaging, experiments are in progress to map the distribution of DNA in specific domains of cell nuclei, where macromolecular complexes are involved in regulation of genes. We have also developed methods for quantitative energy-filtered TEM imaging of other important biological elements like calcium, which requires even more precise correction for plural scattering than does phosphorus mapping.
Chesnick, Ingrid E; Avallone, Francis A; Leapman, Richard D et al. (2007) Evaluation of bioreactor-cultivated bone by magnetic resonance microscopy and FTIR microspectroscopy. Bone 40:904-12 |
Daly, Michael J; Gaidamakova, Elena K; Matrosova, Vera Y et al. (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92 |
Aronova, M A; Kim, Y C; Zhang, G et al. (2007) Quantification and thickness correction of EFTEM phosphorus maps. Ultramicroscopy 107:232-44 |
Aronova, M A; Kim, Y C; Harmon, R et al. (2007) Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST). J Struct Biol 160:35-48 |