This project describes the role of the lab of Stephanie London in the Laboratory of Respiratory Biology in support of her epidemiologic studies. The laboratory is engaged in selection of polymorphisms for analysis, using bioinformatic methods and genotyping analysis of samples from Dr. London's epidemiologic studies of respiratory disease. In the past year, we have focused on the study of childhood asthma in Mexico City (described under project entitled Genetic And Environmental Factors In Childhood Respiratory Health). The laboratory uses primarily real-time PCR technology to identify genetic polymorphisms in these samples. DIR has recently acquired an Illumina reader. Our lab staff have been trained on the use of this technology and we are planning our first set of genotyping using this technology. The lab staff have also received additional offsite training in haplotype analysis and bioinformatics in service of the labs goals. In the past year, we have shifted our focus from individual SNPs to haplotype analysis and from the analysis of single genes to gene pathways. This entails greater genotyping requirement for each gene. Thus we are very excited about the advent of the Illumina at NIEHS. In the next fiscal year, we will also be beginning a collaboration with the SAPALDIA study which involves the genotyping of 5,000 samples from subjects in a very well characterized air pollution cohort. We will be looking at genes that may modify respiratory and cardiovascular effects of air pollution. In FY2006 we anticipate beginning genotyping on nested case-control samples for asthma and COPD in the Singapore Chinese Health Study.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES025045-06
Application #
7168265
Study Section
(LRB)
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2005
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
United States
Zip Code
House, John S; Li, Huiling; DeGraff, Laura M et al. (2015) Genetic variation in HTR4 and lung function: GWAS follow-up in mouse. FASEB J 29:323-35
Reddy, Poovendhree; Naidoo, Rajen N; Robins, Thomas G et al. (2012) GSTM1 and GSTP1 gene variants and the effect of air pollutants on lung function measures in South African children. Am J Ind Med 55:1078-86
London, Stephanie J; Romieu, Isabelle (2009) Gene by environment interaction in asthma. Annu Rev Public Health 30:55-80
London, Stephanie J (2007) Gene-air pollution interactions in asthma. Proc Am Thorac Soc 4:217-20
Wu, Hao; Romieu, Isabelle; Sienra-Monge, Juan-Jose et al. (2007) Genetic variation in S-nitrosoglutathione reductase (GSNOR) and childhood asthma. J Allergy Clin Immunol 120:322-8
Wu, Hao; Romieu, Isabelle; Sienra-Monge, Juan-Jose et al. (2007) Parental smoking modifies the relation between genetic variation in tumor necrosis factor-alpha (TNF) and childhood asthma. Environ Health Perspect 115:616-22
Li, Huiling; Romieu, Isabelle; Wu, Hao et al. (2007) Genetic polymorphisms in transforming growth factor beta-1 (TGFB1) and childhood asthma and atopy. Hum Genet 121:529-38
Raimondi, S; Paracchini, V; Autrup, H et al. (2006) Meta- and pooled analysis of GSTT1 and lung cancer: a HuGE-GSEC review. Am J Epidemiol 164:1027-42
Romieu, I; Sienra-Monge, J J; Ramirez-Aguilar, M et al. (2004) Genetic polymorphism of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax 59:8-10
David, Gloria L; Romieu, Isabelle; Sienra-Monge, Juan Jose et al. (2003) Nicotinamide adenine dinucleotide (phosphate) reduced:quinone oxidoreductase and glutathione S-transferase M1 polymorphisms and childhood asthma. Am J Respir Crit Care Med 168:1199-204

Showing the most recent 10 out of 20 publications