Infection by the HIV virus causes a change in a number of physiological processes, the etiologies of which are poorly understood. Included in this are the depletion of T cells expressing CD4 and B cells expressing immunoglobulins, and changes in the regulation of cytokines. Crucial to an understanding of these processes and to developing therapeutic strategies related to these changes is the determination of the structural motifs critical to the physiological processes involved in the changes. We are employing the methodologies we have been using for epitope determination (protection assays combined with mass spectrometry) (1-4) to probe receptor-ligand pairs relevant to HIV infection including: a) HIV gp120 and immunoglobulin; b) CD4 and gp120 vs. CD4 and Major Histocompatibility Complex class II (MHC-II) molecules, and; c) tumor necrosis factor alpha (TNF') and monoclonal antibodies. Our initial experiments have been to probe uncomplexed gp120 in solution using a variety of enzymes. We found that the recombinant gp120 from CHO cells we had intended to use is extremely heterogenous. Recombinant gp120 was obtained from the AIDS Research and Reference Reagent Program and was found to be significantly purer. Experiments are underway with this material to characterize the products of its proteolysis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES050152-01
Application #
2452863
Study Section
Special Emphasis Panel (LMB)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1996
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Hager-Braun, Christine; Tomer, Kenneth B (2002) Characterization of the tertiary structure of soluble CD4 bound to glycosylated full-length HIVgp120 by chemical modification of arginine residues and mass spectrometric analysis. Biochemistry 41:1759-66
Parker, Carol E; Tomer, Kenneth B (2002) MALDI/MS-based epitope mapping of antigens bound to immobilized antibodies. Mol Biotechnol 20:49-62
Parker, C E; Tomer, K B (2000) Epitope mapping by a combination of epitope excision and MALDI-MS. Methods Mol Biol 146:185-201
Hochleitner, E O; Borchers, C; Parker, C et al. (2000) Characterization of a discontinuous epitope of the human immunodeficiency virus (HIV) core protein p24 by epitope excision and differential chemical modification followed by mass spectrometric peptide mapping analysis. Protein Sci 9:487-96
Hochleitner, E O; Gorny, M K; Zolla-Pazner, S et al. (2000) Mass spectrometric characterization of a discontinuous epitope of the HIV envelope protein HIV-gp120 recognized by the human monoclonal antibody 1331A. J Immunol 164:4156-61
Zhu, X; Borchers, C; Bienstock, R J et al. (2000) Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry 39:11194-204
Zhou, W; Tomer, K B; Khaledi, M G (2000) Evaluation of the binding between potential anti-HIV DNA-based drugs and viral envelope glycoprotein gp120 by capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 284:334-41
Borchers, C; Tomer, K B (1999) Characterization of the noncovalent complex of human immunodeficiency virus glycoprotein 120 with its cellular receptor CD4 by matrix-assisted laser desorption/ionization mass spectrometry. Biochemistry 38:11734-40