of Work: Faulty DNA repair can lead to increased mutations, formation of cancers, and cell death. The process by which repair proteins find damaged bases within the DNA represents an important type of protein-DNA interaction, which is not well-understood. The UvrA, UvrB,and UvrC proteins work together to identify and remove DNA damage in a process called nucleotide excision repair. One of the most remarkable aspects of NER is that it can remove a wide range of DNA lesions that differ in chemistry and structure. The UvrABC proteins are believed to recognize the damage-induced distortion in the DNA helix rather than the lesion per se. However, detailed studies of the kinetics,thermodynamics and structural aspects of the Uvr proteins have been limited due to the lability and instability of the proteins. To overcome this problem we have recently cloned and overexpressed UvrA, UvrB,and UvrC from the thermophile, Bacillus caldotenax. The proteins maintain their activity at 65oC and are more amenable to structural and biophysical studies. Work is underway to understand the structure and function of these proteins using x-ray crystallography, stopped-flow fluorescence and site-directed mutagenesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES061060-02
Application #
6432371
Study Section
(LMG)
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2000
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Imoto, Shuhei; Bransfield, Leslie A; Croteau, Deborah L et al. (2008) DNA tandem lesion repair by strand displacement synthesis and nucleotide excision repair. Biochemistry 47:4306-16
Croteau, Deborah L; DellaVecchia, Matthew J; Perera, Lalith et al. (2008) Cooperative damage recognition by UvrA and UvrB: identification of UvrA residues that mediate DNA binding. DNA Repair (Amst) 7:392-404
Croteau, Deborah L; Peng, Ye; Van Houten, Bennett (2008) DNA repair gets physical: mapping an XPA-binding site on ERCC1. DNA Repair (Amst) 7:819-26
Wang, Hong; Tessmer, Ingrid; Croteau, Deborah L et al. (2008) Functional characterization and atomic force microscopy of a DNA repair protein conjugated to a quantum dot. Nano Lett 8:1631-7
Wolski, Stefanie C; Kuper, Jochen; Hanzelmann, Petra et al. (2008) Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol 6:e149
DellaVecchia, Matthew J; Merritt, W Keither; Peng, Ye et al. (2007) NMR analysis of [methyl-13C]methionine UvrB from Bacillus caldotenax reveals UvrB-domain 4 heterodimer formation in solution. J Mol Biol 373:282-95
Meyer, Joel N; Boyd, Windy A; Azzam, Gregory A et al. (2007) Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans. Genome Biol 8:R70
Ruan, Qian; Liu, Tongming; Kolbanovskiy, Alexander et al. (2007) Sequence context- and temperature-dependent nucleotide excision repair of a benzo[a]pyrene diol epoxide-guanine DNA adduct catalyzed by thermophilic UvrABC proteins. Biochemistry 46:7006-15
Karakas, Erkan; Truglio, James J; Croteau, Deborah et al. (2007) Structure of the C-terminal half of UvrC reveals an RNase H endonuclease domain with an Argonaute-like catalytic triad. EMBO J 26:613-22
Kunkel, Thomas A; Van Houten, Bennett (2006) Survival choices. Nat Cell Biol 8:547-9

Showing the most recent 10 out of 30 publications