Currently, there are over 80,000 chemicals in use and approximately 2000 new chemicals are introduced into use every year. Regulatory agencies have recognized the need for alternative toxicological methods and models to decrease the time and expense of current toxicity testing protocols. In association with the National Toxicology Program (NTP), our group is developing C. elegans as an alterative organism for in vivo toxicological testing. Short life cycles, easy and inexpensive maintenance and culturing, and detailed biological knowledge has allowed for the development of rapid, low-cost toxicity tests that readily lend themselves to mechanistic studies of toxicant actions. Because of the evolutionarily conserved nature of the stress-response and other relevant pathways, it is likely that responses elicited in C. elegans will be applicable to understanding similar processes in higher organisms, including humans.? ? This group is part of the National Toxicology Program and within the new Biomolecular Screening Branch. The screening core is involved in the development of C. elegans as an alternative organism for toxicological testing. Because of the evolutionarily conserved nature of signal transduction and stress-response pathways, it is likely that responses elicited in C. elegans will be applicable to understanding similar processes in higher organisms. There are two major activities of this group: research and development of C. elegans MTS and HTS technologies and participation in the MOU among the NTP, EPA, and NCGC, designated Tox21 (Science 15 February 2008 319: 906-907 DOI: 10.1126/science.1154619). ? ? 1. Development of C. elegans medium-throughput screening assays - Protocols for the monitoring of growth, size, reproduction, feeding, and movement have been developed and have been used to test 100 toxicants. Included in the creation of monitoring protocols, statistical analysis routines have been developed specifically for the C. elegans data. We have submitted one manuscript on the feeding assay and are completing additional studies that will be included in manuscripts currently being prepared on the reproduction and growth assays. In collaboration with Chris Portier (LMT), Grace Kissling (EDBP), Marjolein Smith (ASI) we have developed a mathematical model that described C. elegans growth and the effects of toxicants on growth parameters. We are currently generating a collection of green fluorescent protein-based, stress-responsive transgenic C. elegans lines. These lines of C. elegans will be used to identify the ability of toxicants to modulate the activities of signaling and stress-responsive pathways know the affect organism development (e.g., MAPK, p53, tyrosine phosphatase). ? 2. National Toxicology Program HTS faculty - I am participating in the NTP/EPA/NCGC MOU. We have begun developing protocols to use C. elegans as an HTS test organism. This includes the development of new sampling formats, statistical tools and QA/QC protocols. We are currently testing the NTP 1408 and the ToxCast 320 pesticide actives chemical sets.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES102046-03
Application #
7734554
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2008
Total Cost
$1,401,614
Indirect Cost
City
State
Country
United States
Zip Code
Behl, Mamta; Rice, Julie R; Smith, Marjo V et al. (2016) Editor's Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditis elegans. Toxicol Sci 154:241-252
Boyd, Windy A; Smith, Marjolein V; Co, Caroll A et al. (2016) Developmental Effects of the ToxCastâ„¢ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits. Environ Health Perspect 124:586-93
Song, Min Ok; Mattie, Michael D; Lee, Chang-Ho et al. (2014) The role of Nrf1 and Nrf2 in the regulation of copper-responsive transcription. Exp Cell Res 322:39-50
Rice, Julie R; Boyd, Windy A; Chandra, Dave et al. (2014) Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans. Environ Toxicol Chem 33:82-8
Harrington, James M; Boyd, Windy A; Smith, Marjolein V et al. (2012) Amelioration of metal-induced toxicity in Caenorhabditis elegans: utility of chelating agents in the bioremediation of metals. Toxicol Sci 129:49-56
Boyd, Windy A; McBride, Sandra J; Rice, Julie R et al. (2010) A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol 245:153-9
Leung, Maxwell C K; Goldstone, Jared V; Boyd, Windy A et al. (2010) Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol Sci 118:444-53
Tvermoes, Brooke E; Boyd, Windy A; Freedman, Jonathan H (2010) Molecular characterization of numr-1 and numr-2: genes that increase both resistance to metal-induced stress and lifespan in Caenorhabditis elegans. J Cell Sci 123:2124-34
Boyd, Windy A; Smith, Marjolein V; Kissling, Grace E et al. (2009) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS One 4:e7024
Smith, Marjolein V; Boyd, Windy A; Kissling, Grace E et al. (2009) A discrete time model for the analysis of medium-throughput C. elegans growth data. PLoS One 4:e7018

Showing the most recent 10 out of 15 publications