Radial optic flow applied to large random dot patterns is known to elicit horizontal vergence eye movements at short latency, expansion causing convergence and contraction causing divergence: the Radial Flow Vergence Response (RFVR). We elicited RFVRs in human subjects by applying radial motion to concentric circular patterns whose radial luminance modulation was that of a square wave lacking the fundamental: the missing fundamental (mf) stimulus. The radial motion consisted of successive quarterwavelength steps, so that the overall pattern and the 4n+1 harmonics (where n=integer) underwent radial expansion (or contraction), whereas the 4n-1 harmonicsincluding the strongest Fourier component (the 3rd harmonic)underwent the opposite radial motion. Radial motion commenced only after the subject had fixated the center of the pattern. The initial RFVRs were always in the direction of the 3rd harmonic, e.g., expansion of the mf pattern causing divergence. Thus, the earliest RFVRs were strongly dependent on the motion of the major Fourier component, consistent with early spatio-temporal filtering prior to motion detection, as in the well-known energy model of motion analysis. If the radial mf stimulus was reduced to just two competing harmonicsthe 3rd and 5ththe initial RFVRs showed a nonlinear dependence on their relative contrasts: when the two harmonics differed in contrast by more than about an octave then the one with the higher contrast completely dominated the RFVRs and the one with lower contrast lost its influence: winner-take-all. We suggest that these nonlinear interactions result from mutual inhibition between the mechanisms sensing the motion of the different competing harmonics. If single radial-flow steps were used, a brief inter-stimulus interval resulted in reversed RFVRs, consistent with the idea that the motion detectors mediating these responses receive a visual input whose temporal impulse response function is strongly biphasic. Lastly, all of these characteristics of the RFVR, which we attribute to the early cortical processing of visual motion, are known to be shared by the Ocular Following Response (OFR)a conjugate tracking (version) response elicited at short-latency by linear motionand even the quantitative details are generally very similar. Thus, although the RFVR and OFR respond to very different patterns of global motionradial vs. linearthey have very similar local spatiotemporal properties as though mediated by the same low-level, local-motion detectors, which we suggest are in the striate cortex.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Intramural Research (Z01)
Project #
1Z01EY000153-24
Application #
7594040
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
24
Fiscal Year
2007
Total Cost
$908,652
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Kodaka, Y; Sheliga, B M; FitzGibbon, E J et al. (2007) The vergence eye movements induced by radial optic flow: some fundamental properties of the underlying local-motion detectors. Vision Res 47:2637-60
Sheliga, B M; FitzGibbon, E J; Miles, F A (2007) Human vergence eye movements initiated by competing disparities: evidence for a winner-take-all mechanism. Vision Res 47:479-500
Takemura, Aya; Murata, Yumi; Kawano, Kenji et al. (2007) Deficits in short-latency tracking eye movements after chemical lesions in monkey cortical areas MT and MST. J Neurosci 27:529-41
Rucker, Janet C; Sheliga, Boris M; Fitzgibbon, Edmond J et al. (2006) Contrast sensitivity, first-order motion and Initial ocular following in demyelinating optic neuropathy. J Neurol 253:1203-9
Sheliga, B M; Chen, K J; FitzGibbon, E J et al. (2006) The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals. Vision Res 46:979-92
Miura, Kenichiro; Matsuura, Kiyoto; Taki, Masakatsu et al. (2006) The visual motion detectors underlying ocular following responses in monkeys. Vision Res 46:869-78
Sheliga, B M; Kodaka, Y; FitzGibbon, E J et al. (2006) Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism. Vision Res 46:2041-60
Sheliga, B M; FitzGibbon, E J; Miles, F A (2006) Short-latency disparity vergence eye movements: a response to disparity energy. Vision Res 46:3723-40
Sheliga, B M; Chen, K J; Fitzgibbon, E J et al. (2005) Initial ocular following in humans: a response to first-order motion energy. Vision Res 45:3307-21
Sheliga, B M; Chen, K J; Fitzgibbon, E J et al. (2005) Short-latency disparity vergence in humans: evidence for early spatial filtering. Ann N Y Acad Sci 1039:252-9

Showing the most recent 10 out of 22 publications