This research focuses on metal-catalyzed oxidative modification of biopolymers, especially of proteins. The reaction is enabled by the binding of a metal such as iron or copper to a cation binding site on the targeted protein. Oxygen reacts at that site to generate an activated species which then oxidizes amino acid residues at the binding site. This oxidation leads to an apparently irreversible, covalent modification of proteins which has been implicated in important physiologic and pathologic processes. These include the aging processes, arthritis, hypertension, intracellular protein turnover, oxygen toxicity, and reperfusion injury after ischemia. Determination of the actual roles of oxidative modification in these processes requires development of specific assays for modified proteins, identification of the structural and functional changes induced by modification, and understanding of factors which modulate the rate and specificity of oxidative modification in vivo. These are the current aims of this project. In general, oxidatively-modified enzymes lose catalytic activity and become susceptible to proteolytic degradation. The cation binding site is weakened or destroyed and carbonyl groups are introduced into the side chains of the amino acid residues. These carbonyl groups are considered the hallmark of metal-catalyzed oxidative modification. Assays have been developed which permit detection and quantitation of these protein-bound carbonyl groups. Such assays are now being applied to assess the extent of oxidative modification of proteins in human disease states. Studies designed to specifically inactivate components of the human immunodeficiency virus are also in progress. Such studies have led to the unexpected discovery that low concentrations of copper rapidly inactivate the viral protease. Active protease is essential for viral replication, and thus, this finding has potential therapeutic value in AIDS.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Intramural Research (Z01)
Project #
1Z01HL000225-14
Application #
3857959
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
1991
Total Cost
Indirect Cost
Name
National Heart, Lung, and Blood Institute
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Chang, Allen H K; Jeong, Jinsook; Levine, Rodney L (2011) Iron regulatory protein 2 turnover through a nonproteasomal pathway. J Biol Chem 286:23698-707
Luo, Shen; Levine, Rodney L (2009) Methionine in proteins defends against oxidative stress. FASEB J 23:464-72
Blinova, Ksenia; Levine, Rodney L; Boja, Emily S et al. (2008) Mitochondrial NADH fluorescence is enhanced by complex I binding. Biochemistry 47:9636-45
Luo, Shen; McNeill, Megan; Myers, Timothy G et al. (2008) Lon protease promotes survival of Escherichia coli during anaerobic glucose starvation. Arch Microbiol 189:181-5
Harrigan, Jeanine A; Piotrowski, Jason; Di Noto, Luca et al. (2007) Metal-catalyzed oxidation of the Werner syndrome protein causes loss of catalytic activities and impaired protein-protein interactions. J Biol Chem 282:36403-11
Curtis, Christina; Landis, Gary N; Folk, Donna et al. (2007) Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol 8:R262
Paone, Gregorino; Stevens, Linda A; Levine, Rodney L et al. (2006) ADP-ribosyltransferase-specific modification of human neutrophil peptide-1. J Biol Chem 281:17054-60
Levine, Rodney L (2006) Fixation of nitrogen in an electrospray mass spectrometer. Rapid Commun Mass Spectrom 20:1828-30
Liu, Xiong; Shu, Shi; Hong, Myoung-Soon S et al. (2006) Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments. Proc Natl Acad Sci U S A 103:13694-9
Di Noto, Luca; Whitson, Lisa J; Cao, Xiaohang et al. (2005) Proteasomal degradation of mutant superoxide dismutases linked to amyotrophic lateral sclerosis. J Biol Chem 280:39907-13

Showing the most recent 10 out of 54 publications