A novel chromatographic system is introduced. The system internally generates a concentration gradient of ammonium sulfate (AS) along a long channel to fractionate proteins according to their solubility in AS solution. The separation column consists of a pair of disks with mutually mirror-imaged spiral channels that are separated by a semipermeable membrane. The disk assembly is mounted on a sealless continuous flow centrifuge. Concentrated As solution is introduced into the upper channel while a water solution is passed through the lower channel in the opposite direction in a rotating column. A mixture of proteins injected into the water channel moves along an AS gradient of increasing concentration that has been established in the water solution. Each protein species precipitates at a different AS concentration along the gradient. The eluate is continuously monitored and collected using a fraction collector. The method has been demonstrated on separation of serum proteins and applied to purification of a recombinant ketosteroid isomerase from a crude E. coli lysate by adding an affinity ligand to the sample solution.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Intramural Research (Z01)
Project #
1Z01HL001047-01
Application #
6109187
Study Section
Special Emphasis Panel (LBC)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1998
Total Cost
Indirect Cost
Name
National Heart, Lung, and Blood Institute
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Baldermann, Susanne; Fleischmann, Peter; Bolten, Mareike et al. (2009) Centrifugal precipitation chromatography, a powerful technique for the isolation of active enzymes from tea leaves (Camellia sinensis). J Chromatogr A 1216:4263-7
Takeda, Naoya; Kondo, Masashi; Ito, Satoru et al. (2006) Role of RhoA inactivation in reduced cell proliferation of human airway smooth muscle by simvastatin. Am J Respir Cell Mol Biol 35:722-9
Inui, Masafumi; Fukui, Akimasa; Ito, Yuzuru et al. (2006) Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis. Dev Biol 298:188-200
Cao, Xue-Li; Xu, Ya-Tao; Zhang, Guang-Ming et al. (2006) Purification of coenzyme Q10 from fermentation extract: high-speed counter-current chromatography versus silica gel column chromatography. J Chromatogr A 1127:92-6
Shibusawa, Yoichi; Takeuchi, Naoko; Sugawara, Kazusa et al. (2006) Aqueous-aqueous two-phase systems composed of low molecular weight of polyethylene glycols and dextrans for counter-current chromatographic purification of proteins. J Chromatogr B Analyt Technol Biomed Life Sci 844:217-22
Shibusawa, Yoichi; Yamakawa, Yutaka; Noji, Ryoko et al. (2006) Three-phase solvent systems for comprehensive separation of a wide variety of compounds by high-speed counter-current chromatography. J Chromatogr A 1133:119-25
Ito, Yoichiro (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J Chromatogr A 1065:145-68
Yu, Henry; Ito, Yoichiro (2004) Preparative separation of proteins using centrifugal precipitation chromatography based on solubility in ammonium sulfate solution. Prep Biochem Biotechnol 34:1-12
Ito, Y (2000) Centrifugal precipitation chromatography: principle, apparatus, and optimization of key parameters for protein fractionation by ammonium sulfate precipitation. Anal Biochem 277:143-53