The major aim of the National Heart, Lung and Blood Institute (NHLBI)/Suburban Hospital Cardiovascular MRI Research Project is to develop new approaches in assessing patients with cardiovascular disease with MRI technology. To date, we have focused on four specific aims. 1) Detection of acute coronary syndrome with MRI. Earlier this year, we published that a rest MRI scan had higher sensitivity and specificity for diagnosing non-ST elevation acute coronary syndrome than cardiac risk factors, ECG, and troponin. The sensitivity and specificity for detecting acute coronary syndrome was 84% and 85% by MRI, 80% and 61% by an abnormal ECG, 16% and 95% for ST depression or T-wave inversion, 40% and 97% for peak troponin-I, and 48% and 85% for a TIMI risk score >3. The MRI was more sensitive than strict ECG criteria for ischemia (p<0.001), peak troponin-I (p<0.001), and the TIMI Risk Score (p=0.004). The MRI was more specific than an abnormal ECG (p<0.001). Multivariate logistic regression analysis showed an abnormal MRI was the strongest predictor of acute coronary syndrome and added statistically significant diagnostic value over clinical parameters (p<0.001). We concluded that the resting MRI scan exhibited diagnostic operating characteristics suitable for triage of patients with chest pain in the emergency department. We have extended this work in a second protocol that used adenosine stress MRI to evaluate 141 consecutive patients with troponin-negative acute coronary syndrome. The overall sensitivity and specificity for detecting ischemic heart disease was 96% and 95% respectively. An abnormal adenosine stress MRI had significant 1 year prognostic value. 2) Characterizing myocardial viability with MRI. We also developed a """"""""phase sensitive reconstruction method"""""""" which improves the quality of heart attack images and minimizes the influence of user selected parameters on the apparent size of the heart attack. This year we completed histopathological validation of the phase sensitive reconstruction method. This validation study further shows that a computer algorithm can accurately measure in vivo and ex vivo images of infarct size. 3) First pass myocardial perfusion imaging. We have extended our first pass perfusion methods to provide quantitative analysis methods. We have shown that the MRI can measure myocardial perfusion as accurately as microsphere injections (a gold standard method only usable in animal models). We are in the process of translating these methods to analyze human dipyridamole stress tests. 4) MRI characterization of atherosclerotic plaque. We have extended our prior observations that gadolinium nearly doubles the ability to discriminate different portions of the atherosclerotic plaque. We have studied the kinetics with which contrast enters the fibrous cap and lipid core of carotid atheroma.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Intramural Research (Z01)
Project #
1Z01HL004607-05
Application #
6818298
Study Section
Cancer Etiology Study Section (CE)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2003
Total Cost
Indirect Cost
Name
U.S. National Heart Lung and Blood Inst
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Ferreira, Pedro F; Nielles-Vallespin, Sonia; Scott, Andrew D et al. (2018) Evaluation of the impact of strain correction on the orientation of cardiac diffusion tensors with in vivo and ex vivo porcine hearts. Magn Reson Med 79:2205-2215
Sabayan, Behnam; van Buchem, Mark A; Sigurdsson, Sigurdur et al. (2016) Cardiac and Carotid Markers Link With Accelerated Brain Atrophy: The AGES-Reykjavik Study (Age, Gene/Environment Susceptibility-Reykjavik). Arterioscler Thromb Vasc Biol 36:2246-2251
Sandino, Christopher M; Kellman, Peter; Arai, Andrew E et al. (2015) Myocardial T2* mapping: influence of noise on accuracy and precision. J Cardiovasc Magn Reson 17:7
Kellman, Peter; Bandettini, W Patricia; Mancini, Christine et al. (2015) Characterization of myocardial T1-mapping bias caused by intramyocardial fat in inversion recovery and saturation recovery techniques. J Cardiovasc Magn Reson 17:33
Kellman, Peter; Xue, Hui; Spottiswoode, Bruce S et al. (2015) Free-breathing T2* mapping using respiratory motion corrected averaging. J Cardiovasc Magn Reson 17:3
Sabayan, Behnam; van Buchem, Mark A; Sigurdsson, Sigurdur et al. (2015) Cardiac hemodynamics are linked with structural and functional features of brain aging: the age, gene/environment susceptibility (AGES)-Reykjavik Study. J Am Heart Assoc 4:e001294
Nielles-Vallespin, Sonia; Kellman, Peter; Hsu, Li-Yueh et al. (2015) FLASH proton density imaging for improved surface coil intensity correction in quantitative and semi-quantitative SSFP perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson 17:16
Saba, Shahryar G; Ertel, Andrew W; Siegenthaler, Michael et al. (2014) Hemodynamic Consequences of Hypertrophic Cardiomyopathy with Midventricular Obstruction: Apical Aneurysm and Thrombus Formation. J Gen Pract (Los Angel) 2:
Kellman, Peter; Xue, Hui; Chow, Kelvin et al. (2014) Optimized saturation recovery protocols for T1-mapping in the heart: influence of sampling strategies on precision. J Cardiovasc Magn Reson 16:55
Matthews, Karen A; Chang, Yuefang; Kravitz, Howard M et al. (2014) Sleep and risk for high blood pressure and hypertension in midlife women: the SWAN (Study of Women's Health Across the Nation) Sleep Study. Sleep Med 15:203-8

Showing the most recent 10 out of 83 publications