Physical and theoretical models of anatomical and physiological systems are being used in our laboratory to study a variety of phenomena such as the transport of drugs into the eye and the thermal ablation of tumors. The following three projects are reported for this year: ? ? (1) Magnetic Resonance Imaging (MRI) of Drug Movement in the Eye: A number of inflammatory and neoplastic diseases of the eye are currently treated by repeated intravitreal drug injection. We are developing sustained drug release devices for both intravitreal and subconjunctival implantation that could release drugs for periods as long as months. We are also testing the use of a thermosetting polymer, ReGel, into the subconjunctival space of rats and rabbits as an injectable agent for long term release of drugs. These devices would eliminate the need for frequent invasive intervention. A number of different drugs and device configurations are being evaluated in vitro and in vivo. Understanding the mechanism of drug transport within the eye is crucial to optimal delivery of agents with the implant devices. In one project, we are using MRI as a non-invasive means to track the movement of several MRI-enhancers, such as Gd-DPTA and Gd-albumin. The delivery of these agents is by slow continuous infusion either into the subconjunctiva or intra-scleral space of rabbits. Finite element mathematical models, which will incorporate the physico-chemical properties of the drug, and the physiology of the eye will be investigated. These models are useful in guiding the design of the drug release devices for optimal therapy.? ? (2) To study the feasibility of using an injectable thermosetting gel that may release drugs into the eye over sustained periods of days or weeks, we are using florescence imaging to map and to quantitate the concentration of marker agents, like Alexaflor dye and fluorescently labeled ovalbumin, from microtomed rat eye tissue sections. Rabbits are injected with the dye and sacrificed at serial time points for tissue sampling. Image processing tools are employed to quantitate image intensity with marker concentration.? ? (3) Radio-frequency Ablation of Solid Tumors: We have developed an in vitro method of simulating thermal ablation of tumor tissue using chicken egg whites whose protein coagulates at approximately 60 degrees C. Our initial experiments used video recording of the egg protein coagulation and demonstrated the temporal and spatial pattern of tissue 'death' which coincides with the protein coagulation. Several clinical thermal ablation probes were studied. These experimental ablation patterns have been corroborated by heat transfer mathematical models. We have extended these studies by using polyacrylimide gels as tissue simulants and we have measured temperature profiles during RF ablation by means of thermocouples and infra-red thermography. Our experiments help us to gain a better understanding of the effect of cooling by adjacent blood vessels on the thermal burn patterns and to predict temperature profiles from a variety of commercially available thermal probes. In addition to the RF ablation, in vitro studies are underway that investigate the use of high frequency focused ultrasound (HIFU) as a means of thermal killing of tumors and also for enhancing the uptake of chemotherapeutic drugs selectively into tumor cells.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Intramural Research (Z01)
Project #
1Z01OD010324-09
Application #
7319035
Study Section
(BEPS)
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2006
Total Cost
Indirect Cost
Name
Office of the Director, NIH
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Robinson, Michael R; Lee, Susan S; Kim, Hyuncheol et al. (2006) A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res 82:479-87
Kim, Hyuncheol; Csaky, Karl G; Gravlin, Luisa et al. (2006) Safety and pharmacokinetics of a preservative-free triamcinolone acetonide formulation for intravitreal administration. Retina 26:523-30
Kim, Hyuncheol; Csaky, Karl G; Chan, Chi-Chao et al. (2006) The pharmacokinetics of rituximab following an intravitreal injection. Exp Eye Res 82:760-6
Kim, Hyuncheol; Csaky, Karl G; Gilger, Brian C et al. (2005) Preclinical evaluation of a novel episcleral cyclosporine implant for ocular graft-versus-host disease. Invest Ophthalmol Vis Sci 46:655-62
Kim, Hyuncheol; Lizak, Martin J; Tansey, Ginger et al. (2005) Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann Biomed Eng 33:150-64
Amaral, Juan; Fariss, Robert N; Campos, Maria M et al. (2005) Transscleral-RPE permeability of PEDF and ovalbumin proteins: implications for subconjunctival protein delivery. Invest Ophthalmol Vis Sci 46:4383-92
Park, Juyoung; Bungay, Peter M; Lutz, Robert J et al. (2005) Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release 105:279-95
Kim, Hyuncheol; Robinson, Michael R; Lizak, Martin J et al. (2004) Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Ophthalmol Vis Sci 45:2722-31
Yim, Peter J; Cebral, Juan R; Weaver, Ashley et al. (2004) Estimation of the differential pressure at renal artery stenoses. Magn Reson Med 51:969-77
Lutz, Robert J; Warren, Kathy; Balis, Frank et al. (2002) Mixing during intravertebral arterial infusions in an in vitro model. J Neurooncol 58:95-106

Showing the most recent 10 out of 12 publications