The intent of this project is to develop new and improve existing methodology for the characterization of biological macromolecules, and to apply these methods collaboratively to the study of macromolecules and their interactions. Techniques employed are analytical ultracentrifugation, static and dynamic light scattering, isothermal titration calorimetry, and surface plasmon resonance biosensing. In analytical ultracentrifugation, further methodological advances have been made in the modeling of macromolecular size-distributions by direct boundary analysis and Lamm equation modeling. This could be generalized to obtain weight-average frictional ratios of the sedimenting macromolecules. Also, we extended the previously developed methods for the hydrodynamic characterization of small molecules, charged macromolecules, and highly elongated non-ideally sedimenting macromolecules. These methods were applied to the characterization of the protein oligomeric state. Experimental model systems for the study of protein-surface binding were explored, and theoretical concepts for the description of extended self-association were developed. In surface plasmon resonance biosensing, we have further refined the previously developed small volume sample handling technique and applied it to the recovery of sample for mass spectrometry, as well as an assay for the sera reactivity of antibodies. All biophysical methods were collaboratively applied to the study of several proteins and their reversible interactions: We have characterized the oligomeric state of HIV and SIV recombinant and virion-derived envelope proteins gp120 and gp140, and a multimeric sCD4 fusion protein. We have extended previous studies of the structure-function relationship of the rotavirus nonstructural protein NSP2 to its temperature-sensitive variant tsE. Other proteins that have been studied include the T-cell receptor and its interactions with MHC molecules and superantigens, LY49A molecules, and G-proteins and its interactions. The characterization of many of these systems has been completed, and several collaborative publications are in press, submitted, and in preparation.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Intramural Research (Z01)
Project #
1Z01OD010485-04
Application #
6548621
Study Section
(BEPS)
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Office of the Director, NIH
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Brown, Patrick H; Balbo, Andrea; Schuck, Peter (2007) Using prior knowledge in the determination of macromolecular size-distributions by analytical ultracentrifugation. Biomacromolecules 8:2011-24
Svitel, Juraj; Boukari, Hacene; Van Ryk, Donald et al. (2007) Probing the functional heterogeneity of surface binding sites by analysis of experimental binding traces and the effect of mass transport limitation. Biophys J 92:1742-58
Houtman, Jon C D; Brown, Patrick H; Bowden, Brent et al. (2007) Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci 16:30-42
Chen, Zhaochun; Earl, Patricia; Americo, Jeffrey et al. (2006) Chimpanzee/human mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus. Proc Natl Acad Sci U S A 103:1882-7
Chen, Zhaochun; Moayeri, Mahtab; Zhou, Yi-Hua et al. (2006) Efficient neutralization of anthrax toxin by chimpanzee monoclonal antibodies against protective antigen. J Infect Dis 193:625-33
Garcia, Alonzo D; Otero, Joel; Lebowitz, Jacob et al. (2006) Quaternary structure and cleavage specificity of a poxvirus holliday junction resolvase. J Biol Chem 281:11618-26
Agniswamy, Johnson; Nagiec, Michal J; Liu, Mengyao et al. (2006) Crystal structure of group A streptococcus Mac-1: insight into dimer-mediated specificity for recognition of human IgG. Structure 14:225-35
Heeb, M J; Schuck, P; Xu, X (2006) Protein S multimers and monomers each have direct anticoagulant activity. J Thromb Haemost 4:385-91
Dam, Julie; Baber, James; Grishaev, Alexander et al. (2006) Variable dimerization of the Ly49A natural killer cell receptor results in differential engagement of its MHC class I ligand. J Mol Biol 362:102-13
Houtman, Jon C D; Yamaguchi, Hiroshi; Barda-Saad, Mira et al. (2006) Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol 13:798-805

Showing the most recent 10 out of 69 publications