Basic and translational research has investigated the role of Nm23 in the regulation of tumor metastasis. Ten transfection studies have documented that overexpression of Nm23 in various tumor cell lines resulted in a 50-90% decrease in tumor metastatic potential in vivo. The biochemical mechanism whereby Nm23 suppresses metastatic potential is under investigation. We have previously identified an interaction between Nm23-H1 and Kinase suppressor of ras, a putative scaffold protein for the Erk Map kinase complex. Nm23-H1 bound and phosphorylated serines 392 and 434 of Ksr. Transfection of breast carcinoma cells with wild type Nm23-H1 reduced Map kinase activation as compared to vector transfectant controls. We suggested the hypothesis that Nm23-H1 interaction with Ksr results in altered scaffold function, reduced Map kinase signaling and altered metastatic potential. Recently we found that Nm23-H1 expression level alters the stoichiometry of protein binding to the Ksr scaffold. In transient and stable Nm23-H1 overexpressing breast cells, greater Hsp90 is bound to Ksr than in control transfectants. The greater Hsp90 binding is accompanied by accelerated degradation of Ksr, and enhanced sensitivity to the geldanamycins in anchorage independent proliferation assays. The data indicate a potential mechanism of Nm23-H1 modulation of Ksr scaffold function, and suggest an interaction of metastatic potential and drug sensitivity. Translational research on Nm23 proposes that elevation of Nm23 expression in micrometastatic or overtly metastatic breast or other carcinomas may limit colonization, motility and de-differentiation, with a clinical benefit. Analysis of the nm23-H1 promoter revealed a 400 bp region which controlled expression, and contained a cassette of transcription factors regulated by a glucocorticoid response element (GRE). Deletion studies showed that these sites were functional in regulating nm23-H1 transcription. Medroxyprogesterone acetate (MPA), an agonist for GR, androgen receptor and progesterone receptor, elevated Nm23-H1 expression of breast carcinoma cell lines in vitro. MPA acted via a post-transcriptional mechanism using the GR, at pharmacologic doses. We have conducted preclinical experiments to determine if MPA can halt metastatic colonization. Mice were injected iv with metastatic human MDA-MB-231 breast carcinoma cells, and permitted to develop micrometastases for one month. Mice were then randomized to control vehicle or MPA, the latter given in a one month induction and subsequent bimonthly maintenance dose. Mice receiving MPA had fewer gross metastases in the lung in two experiments. Immunohistochemistry revealed that MPA treated mice had a greater proportion of pulmonary metastases with high Nm23 expression. Side effects included weight gain, but no effects on bone mineral density or mammary histology. The data indicate that agents elevating metastsis suppressor gene expression may be effective against metastatic colonization, and suggest Phase I trial of this agent for elevation of Nm23 expression as a molecular target.

Agency
National Institute of Health (NIH)
Institute
Division of Clinical Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01SC000892-21
Application #
7066785
Study Section
(LP)
Project Start
Project End
Budget Start
Budget End
Support Year
21
Fiscal Year
2004
Total Cost
Indirect Cost
Name
Clinical Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Marino, Natascia; Collins, Joshua W; Shen, Changyu et al. (2014) Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines. Clin Exp Metastasis 31:771-86
Steeg, Patricia S; Anderson, Robin L; Bar-Eli, Menashe et al. (2009) An open letter to the FDA and other regulatory agencies: Preclinical drug development must consider the impact on metastasis. Clin Cancer Res 15:4529
Lu, Jing; Steeg, Patricia S; Price, Janet E et al. (2009) Breast cancer metastasis: challenges and opportunities. Cancer Res 69:4951-3
Horak, Christine E; Lee, Jong Heun; Elkahloun, Abdel G et al. (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 67:7238-46
Palmieri, Diane; Horak, Christine E; Lee, Jong-Heun et al. (2006) Translational approaches using metastasis suppressor genes. J Bioenerg Biomembr 38:151-61
Steeg, Patricia S (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895-904
Athauda, Gagani; Giubellino, Alessio; Coleman, Jonathan A et al. (2006) c-Met ectodomain shedding rate correlates with malignant potential. Clin Cancer Res 12:4154-62
Salerno, Massimiliano; Palmieri, Diane; Bouadis, Amina et al. (2005) Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1) Erk scaffold in breast carcinoma cells. Mol Cell Biol 25:1379-88
Steeg, Patricia S (2005) New insights into the tumor metastatic process revealed by gene expression profiling. Am J Pathol 166:1291-4
Palmieri, Diane; Halverson, Douglas O; Ouatas, Taoufik et al. (2005) Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst 97:632-42

Showing the most recent 10 out of 19 publications