Our long standing interest in cutaneous dendritic cell physiology continues. Recently developed mice that are constitutively, or that can be made conditionally, Langerhans cell-deficient allow definitive studies of Langerhans cell function and development to be carried out for the first time. Using one of these strains of mice and a variety of monoclonal antibodies have allowed us to conclusively identify at least 3 distinct subsets of dendritic cells in skin and to begin to characterize lineage relationships between them. In addition, we have utilized Langerhans cell-deficient to identify an unexpected role for these cells in antibody forming responses. Immunization of transgenic mice at a time when they are Langerhans cell deficient via gene gun leads to selective attenuation of the IgG1 isotype response. Since IgG1 formation is thought to be IL-4-dependent, this suggests that Langerhans cells may be specialized to present antigen to Th2 cells. How this might occur remains to be determined. These findings are described in a manuscript that has been submitted for publication. Another project area that is being actively pursued in the laboratory involves testing the feasibility of using T cell receptor proteins expressed by clonal T cell malignancies as tumor antigens in vaccines. DNA-based (genetic vaccination) strategies are being emphasized because of concerns regarding the practicality of patient-specific therapies. A reproducible model involving subcutaneous growth of T cell lymphomas in mice has been established in the laboratory. cDNAs encoding T cell receptor alpha and beta chains from this murine T cell lymphoma have been cloned and sequenced, and several candidate vaccines have been generated. We have determined that several candidate vaccines have activity. In the course of these studies, we identified a novel adjuvant strategy that dramatically increases the efficacy of TCR-based vaccines. We have also shown that this strategy can be generalized, both with regard to the nature of the helper antigen and to the tumor and corresponding tumor antigen. Because we anticipate that this adjuvant strategy will be generally applicable and well tolerated, incorporation into human vaccine trials may be feasible. A publication describing these findings will appear soon in the journal Blood. Collaborative studies of dendritic cells and their products in experimental cutaneous leishmaniasis are also ongoing, and results continue to inform our understanding of dendritic cell function in this murine model of an important human disease. Recent results implicate the cytokine IL-17 and neutrophils in Leishmania pathogenesis in susceptible mice. It is anticipated that these insights will promote development of a vaccine that will attenuate the burden of this world-wide health problem.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01SC003669-19
Application #
7735352
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
19
Fiscal Year
2008
Total Cost
$411,997
Indirect Cost
Name
National Cancer Institute Division of Clinical Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Leitner, Wolfgang W; Baker, Matthew C; Berenberg, Thomas L et al. (2009) Enhancement of DNA tumor vaccine efficacy by gene gun-mediated codelivery of threshold amounts of plasmid-encoded helper antigen. Blood 113:37-45
Nagao, Keisuke; Ginhoux, Florent; Leitner, Wolfgang W et al. (2009) Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci U S A 106:3312-7
Terunuma, Atsushi; Kapoor, Veena; Yee, Carole et al. (2007) Stem cell activity of human side population and alpha6 integrin-bright keratinocytes defined by a quantitative in vivo assay. Stem Cells 25:664-9
Nigg, Axel P; Zahn, Sabine; Ruckerl, Dominik et al. (2007) Dendritic cell-derived IL-12p40 homodimer contributes to susceptibility in cutaneous leishmaniasis in BALB/c mice. J Immunol 178:7251-8
Neutzner, Melanie; Lopez, Theresa; Feng, Xu et al. (2007) MFG-E8/lactadherin promotes tumor growth in an angiogenesis-dependent transgenic mouse model of multistage carcinogenesis. Cancer Res 67:6777-85
Tada, Yayoi; Riedl, Elisabeth; Lowenthal, Mark S et al. (2006) Identification and characterization of endogenous Langerin ligands in murine extracellular matrix. J Invest Dermatol 126:1549-58
Udey, Mark C (2006) Langerhans cells on guard in the epidermis: poised to dSEARCH and ...? J Invest Dermatol 126:705-7
Kostka, Susanna Lopez; Knop, Jurgen; Konur, Abdo et al. (2006) Distinct roles for IL-1 receptor type I signaling in early versus established Leishmania major infections. J Invest Dermatol 126:1582-9
Ohyama, Manabu; Terunuma, Atsushi; Tock, Christine L et al. (2006) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116:249-60
Woelbing, Florian; Kostka, Susanna Lopez; Moelle, Katharina et al. (2006) Uptake of Leishmania major by dendritic cells is mediated by Fcgamma receptors and facilitates acquisition of protective immunity. J Exp Med 203:177-88

Showing the most recent 10 out of 21 publications