""""""""The role of calcium in the regulation of ion channels, downstream signaling, and gene expression was investigated. CAI, an inhibitor of nonvoltage-gated calcium influx, has been used as a tool to dissect calcium-mediated signaling. We have focused on the role of calcium on the regulation of endothelial cell function and have demonstrated that CAI inhibits endothelial cell proliferation, adhesion, motility, and collagenase expression. Intracellular free cytosolic calcium increases after attachment to type IV collagen, during the spreading process. This is inhibited by exposure to CAI initiated at completion of attachment. We have now demonstrated that calcium influx is necessary for formation of actin stress fibers during the spreading process. This is unique to type IV collagen, not occurring on type I collagen. Stress fiber formation can be expedited by agents that increase calcium influx and abrogated by CAI or other agents that chelate extracellular calcium or prevent influx. We have demonstrated that the biochemical effect occurs at the point of RhoA activation. We have linked our calcium-regulation of focal contact formation with the stress fiber observations by demonstration of a calcium influx sensitive partnership between FAK and p190RhoGAP. Further studies are ongoing to confirm these findings using molecular constructs to regulate the Rac-RhoA pathway in endothelial cells. We had hypothesized that extracellular Ca++ was regulatory to endothelial cells. We found that increasing extracellular Ca++ inhibited spreading and reduced motility but surprisingly found that extracellular Mg++ functioned as a chemoattractant for and to augment spreading of endothelial cells. A dose dependent effect of extracellular Mg++ was shown for chemotaxis, chemokinesis, and spreading on multiple substrata. Dissection of the pathways involved in Mg++-stimulated chemotaxis is in progress. Preliminary results indicate that inhibition of tyrosine phosphorylation with a tyrphostin abrogates migration as does treatment with pertussis toxin and a nonspecific inhibitor of protein kinase C isotypes. This suggests that Mg++ mediates its chemotactic function through a G-alpha-i linked receptor and a tyrosine kinase. Further studies are ongoing.""""""""

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01SC009374-07
Application #
6123726
Study Section
Special Emphasis Panel (LP)
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
1998
Total Cost
Indirect Cost
Name
National Cancer Institute Division of Clinical Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Hoskins, Ebony; Rodriguez-Canales, Jaime; Hewitt, Stephen M et al. (2011) Paracrine SLPI secretion upregulates MMP-9 transcription and secretion in ovarian cancer cells. Gynecol Oncol 122:656-62
Balkwill, Frances R; Ashworth, Alan; Bast, Robert C et al. (2006) 10th Biennial Helene Harris Memorial Trust meeting. Cancer Res 66:2904-6
Alessandro, Riccardo; Di Bella, Maria Antonietta; Flugy, Anna Maria et al. (2006) Comparative study of T84 and T84SF human colon carcinoma cells: in vitro and in vivo ultrastructural and functional characterization of cell culture and metastasis. Virchows Arch 449:48-61
Davidson, Ben; Espina, Virginia; Steinberg, Seth M et al. (2006) Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin Cancer Res 12:791-9
Azad, Nilofer S; Rasool, Nabila; Annunziata, Christina M et al. (2006) Proteomics in clinical trials and practice: present uses and future promise. Mol Cell Proteomics 5:1819-29
Kassis, Jareer N; Guancial, Elizabeth A; Doong, Howard et al. (2006) CAIR-1/BAG-3 modulates cell adhesion and migration by downregulating activity of focal adhesion proteins. Exp Cell Res 312:2962-71
Stevens, Ellen V; Raffeld, Mark; Espina, Virginia et al. (2005) Expression of xeroderma pigmentosum A protein predicts improved outcome in metastatic ovarian carcinoma. Cancer 103:2313-9
Kassis, Jareer; Klominek, Julius; Kohn, Elise C (2005) Tumor microenvironment: what can effusions teach us? Diagn Cytopathol 33:316-9
Perabo, Frank G E; Demant, Andre W; Wirger, Andreas et al. (2005) Carboxyamido-triazole (CAI) reverses the balance between proliferation and apoptosis in a rat bladder cancer model. Anticancer Res 25:725-9
Winters, Mary E; Mehta, Arpita I; Petricoin 3rd, Emanuel F et al. (2005) Supra-additive growth inhibition by a celecoxib analogue and carboxyamido-triazole is primarily mediated through apoptosis. Cancer Res 65:3853-60

Showing the most recent 10 out of 22 publications