Macromolecular agents composed of serum albumin or linear polymers have MRI contrast enhancement factors less than those predicted for rigid molecules of comparable size. MRI contrast agents based upon dendrimers obviate this deficiency. Terminal primary amines of dendrimers modified with appropriate chelating agents that effectively complex Gd(III) complexes are developed in our laboratories. These reagents possess a molar relaxivity of up to 6 times that of Gd(III)DTPA. Excellent conventional whole body MR imaging and 3D T-O-F MR angiograms have been obtained. Studies continue to thoroughly explore the utility of these agents. These macromolecular chelate conjugated dendrimer based Gd(III) MR contrast agents can be tuned for various applications by adjusting tuning several fundamental criteria: generation (MW & size), core elements (lipophilicity & charge), PEG conjugation, lysine co-administration (renal clearance), and conjugation to targetng vectors (molecular targeting). PAMAM based agents have imaged murine tumor vasculature accurately at the 200 micron scale. DAB based agents have selective properties wherein reverse contrast images of 0.3 mm metastatic liver tumors are detected. These agents can be selectively targeted, not only by conjugation to antibodies, but by other vectors to deliver exceptionally high levels of Gd(III) into disseminated intraperitoneal ovarian cancer tumor. Recent results include: (1) assessment of chemotherapy induced renal toxicity whereby the MRI images of damaged kidney correlate with standard blood chemistries; (2) imaging of the lymphatic system with particular attention to involvement of the lymph nodes relating to lymphoma; (3) imaging of breast cancer involvement with drainage to sentinal nodes for lymph node involvement diagnosis; and (4) effects of external beam radiation on then integrity of tumor vasculature.

Agency
National Institute of Health (NIH)
Institute
Division of Clinical Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01SC010051-08
Application #
6947705
Study Section
(ROB)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2003
Total Cost
Indirect Cost
Name
Clinical Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Xu, Heng; Eck, Peter K; Baidoo, Kwamena E et al. (2009) Toward preparation of antibody-based imaging probe libraries for dual-modality positron emission tomography and fluorescence imaging. Bioorg Med Chem 17:5176-81
Boswell, C Andrew; Regino, Celeste A S; Baidoo, Kwamena E et al. (2008) Synthesis of a cross-bridged cyclam derivative for peptide conjugation and 64Cu radiolabeling. Bioconjug Chem 19:1476-84
Chong, Hyun-Soon; Lim, Sooyoun; Baidoo, Kwamena E et al. (2008) Synthesis and biological evaluation of a novel decadentate ligand DEPA. Bioorg Med Chem Lett 18:5792-5
Xu, Heng; Baidoo, Kwamena E; Wong, Karen J et al. (2008) A novel bifunctional maleimido CHX-A''chelator for conjugation to thiol-containing biomolecules. Bioorg Med Chem Lett 18:2679-83
Chong, Hyun-Soon; Ma, Xiang; Le, Thien et al. (2008) Rational design and generation of a bimodal bifunctional ligand for antibody-targeted radiation cancer therapy. J Med Chem 51:118-25
Boswell, C Andrew; Eck, Peter K; Regino, Celeste A S et al. (2008) Synthesis, characterization, and biological evaluation of integrin alphavbeta3-targeted PAMAM dendrimers. Mol Pharm 5:527-39
Tolmachev, Vladimir; Xu, Heng; Wallberg, Helena et al. (2008) Evaluation of a maleimido derivative of CHX-A''DTPA for site-specific labeling of affibody molecules. Bioconjug Chem 19:1579-87
Bumb, A; Brechbiel, M W; Choyke, P L et al. (2008) Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnology 19:335601
Xu, Heng; Baidoo, Kwamena; Gunn, Andrew J et al. (2007) Design, synthesis, and characterization of a dual modality positron emission tomography and fluorescence imaging agent for monoclonal antibody tumor-targeted imaging. J Med Chem 50:4759-65
Kobayashi, Hisataka; Kawamoto, Satomi; Bernardo, Marcelino et al. (2006) Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J Control Release 111:343-51

Showing the most recent 10 out of 32 publications