The ability of synapses to change their properties in response to environmental demands (synaptic plasticity) is essential for learning and memory. Abnormalities in synaptic plasticity are involved in Alzheimers disease and related disorders. In our continuing efforts to understand the molecular mechanisms involved in synaptic plasticity, in the contexts of aging and neurodegenerative disorders, we have made several major advances. We used Notch antisense transgenic mice that develop and reproduce normally, but exhibit reduced levels of Notch, to demonstrate a role for Notch signaling in synaptic plasticity. Mice with reduced Notch levels exhibit impaired long-term potentiation (LTP) at hippocampal CA1 synapses. A Notch ligand enhances LTP in normal mice and corrects the defect in LTP in Notch antisense transgenic mice. Levels of basal and stimulation-induced NF-kappa B activity were significantly decreased in mice with reduced Notch levels. These findings suggest an important role for Notch signaling in a form of synaptic plasticity known to be associated with learning and memory processes. We found that Notch1 and its ligand Jagged1 are present at the synapse, and that Notch signaling in neurons occurs in response to synaptic activity. In addition, neuronal Notch signaling is positively regulated by Arc/Arg3.1, an activity-induced gene required for synaptic plasticity. In Arc/Arg3.1 mutant neurons, the proteolytic activation of Notch1 is disrupted both in vivo and in vitro. Conditional deletion of Notch1 in the postnatal hippocampus disrupted both long-term potentiation (LTP) and long-term depression (LTD), and led to deficits in learning and short-term memory. Our findings show that Notch signaling is dynamically regulated in response to neuronal activity, Arc/Arg3.1 is a context-dependent Notch regulator, and Notch1 is required for the synaptic plasticity that contributes to memory formation. The synaptic insertion or removal of AMPA receptors (AMPAR) plays critical roles in the regulation of synaptic activity reflected in the expression of long-term potentiation (LTP) and long-term depression (LTD). The cellular events underlying this important process in learning and memory are still being revealed. Here we describe and characterize the AAA+ ATPase Thorase, which regulates the expression of surface AMPAR. In an ATPase-dependent manner Thorase mediates the internalization of AMPAR by disassembling the AMPAR-GRIP1 complex. Following genetic deletion of Thorase, the internalization of AMPAR is substantially reduced, leading to increased amplitudes of miniature excitatory postsynaptic currents, enhancement of LTP, and elimination of LTD. These molecular events are expressed as deficits in learning and memory in Thorase null mice. Thus, we have identified a novel an AAA+ ATPase that plays a critical role in regulating the surface expression of AMPAR and thereby regulates synaptic plasticity and learning and memory. Tomosyn, a syntaxin-binding protein, is known to inhibit vesicle priming and synaptic transmission via interference with the formation of SNARE complexes. Using a lentiviral vector, we specifically overexpressed tomosyn1 in hippocampal dentate gyrus neurons in adult mice. Mice were then subjected to spatial learning and memory tasks and electrophysiological measurements from hippocampal slices. Tomosyn1-overexpression significantly impaired hippocampus-dependent spatial memory while tested in the Morris water maze. Further, tomosyn1-overexpressing mice utilize swimming strategies of lesser cognitive ability in the Morris water maze compared with control mice. Electrophysiological measurements at mossy fiber-CA3 synapses revealed impaired paired-pulse facilitation in the mossy fiber of tomosyn1-overexpressing mice. This study provides evidence for novel roles for tomosyn1 in hippocampus-dependent spatial learning and memory, potentially via decreased synaptic transmission in mossy fiber-CA3 synapses. Moreover, it provides new insight regarding the role of the hippocampal dentate gyrus and mossy fiber-CA3 synapses in swimming strategy preference, and in learning and memory. The formation, maintenance and reorganization of synapses are critical for brain development and the responses of neuronal circuits to environmental challenges. Here we describe a novel role for peroxisome proliferator-activated receptor alpha;co-activator gamma (PGC-1alpha);, a master regulator of mitochondrial biogenesis, in the formation and maintenance of dendritic spines in hippocampal neurons. In cultured hippocampal neurons, PGC-1alpha overexpression increases dendritic spines and enhances the molecular differentiation of synapses, whereas knockdown of PGC-1alpha inhibits spinogenesis and synaptogenesis. Proliferator-activated receptor γco-activator 1αknockdown also reduces the density of dendritic spines in hippocampal dentate granule neurons in vivo. We further show that brain-derived neurotrophic factor stimulates PGC-1alpha-dependent mitochondrial biogenesis by activating extracellular signal-regulated kinases and cyclic AMP response element-binding protein. PGC-1alpha knockdown inhibits brain-derived neurotrophic factor-induced dendritic spine formation without affecting expression and activation of the brain-derived neurotrophic factor receptor tyrosine receptor kinase B. Our findings suggest that PGC-1alpha and mitochondrial biogenesis have important roles in the formation and maintenance of hippocampal dendritic spines and synapses. Toll-like receptors (TLRs) play essential roles in innate immunity and increasing evidence indicates that these receptors are expressed in neurons, astrocytes and microglia in the brain where they mediate responses to infection, stress and injury. Very little is known about the roles of TLRs in cognition. To test the hypothesis that TLR4 has a role in hippocampus-dependent spatial learning and memory, we used mice deficient for TLR4 and mice receiving chronic TLR4 antagonist infusion to the lateral ventricles in the brain. We found that developmental TLR4 deficiency enhances spatial reference memory acquisition and memory retention, impairs contextual fear-learning and enhances motor functions, traits that were correlated with CREB up-regulation in the hippocampus. TLR4 antagonist infusion into the cerebral ventricles of adult mice did not affect cognitive behavior, but instead affected anxiety responses. Our findings indicate a developmental role for TLR4 in shaping spatial reference memory, and fear learning and memory. Moreover, we show that central TLR4 inhibition using a TLR4 antagonist has no discernible physiological role in regulating spatial and contextual hippocampus-dependent cognitive behavior.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000317-14
Application #
8931508
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Zhang, Shi; Eitan, Erez; Wu, Tsung-Yu et al. (2018) Intercellular transfer of pathogenic ?-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol Aging 61:52-65
Mattson, Mark P; Moehl, Keelin; Ghena, Nathaniel et al. (2018) Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 19:63-80
Nigam, Saket M; Xu, Shaohua; Kritikou, Joanna S et al. (2017) Exercise and BDNF reduce A? production by enhancing ?-secretase processing of APP. J Neurochem 142:286-296
Fang, Evandro F; Lautrup, Sofie; Hou, Yujun et al. (2017) NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends Mol Med 23:899-916
Raefsky, Sophia M; Mattson, Mark P (2017) Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med 102:203-216
Misiak, Magdalena; Vergara Greeno, Rebeca; Baptiste, Beverly A et al. (2017) DNA polymerase ? decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease. Aging Cell 16:162-172
Liu, Yong; Zhou, Li-Jun; Wang, Jun et al. (2017) TNF-? Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury. J Neurosci 37:871-881
Yao, Pamela J; Manor, Uri; Petralia, Ronald S et al. (2017) Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Mol Biol Cell 28:387-395
Mattson, Mark P; Longo, Valter D; Harvie, Michelle (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46-58
Cheng, Aiwu; Yang, Ying; Zhou, Ye et al. (2016) Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab 23:128-42

Showing the most recent 10 out of 98 publications