Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1. Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2,4-dinitrophenol (DNP), a drug previously used for weight loss. We found that when mice are treated with DNP their brain cells undergo reprogramming of signaling cascades that included suppression of the mammalian target of rapamycin (mTOR) and insulin - PI3K - MAPK pathways, and up-regulation of tuberous sclerosis complex 2, a negative regulator of mTOR. Genes encoding proteins involved in autophagy processes were up-regulated in response to DNP. CREB (cAMP-response element-binding protein) signaling, Arc and brain-derived neurotrophic factor, which play important roles in synaptic plasticity and adaptive cellular stress responses, were up-regulated in response to DNP, and DNP-treated mice exhibited improved performance in a test of learning and memory. The molecular reprogramming induced by DNP, which is similar to that of exercise and fasting, is associated with improved learning and memory, suggesting potential therapeutic applications for DNP. Humans and their predecessors evolved in environments where they were challenged intermittently with: 1) food scarcity; 2) the need for aerobic fitness to catch/kill prey and avoid or repel attackers; and 3) exposure to biological toxins present in foodstuffs. Accordingly, cells and organ systems acquired and retained molecular signaling and metabolic pathways through which the environmental challenges enhanced the functionality and resilience of the cells and organisms. Within the past 60 years there has been a precipitous diminution of such challenges in modern societies because of the development of technologies that provide a continuous supply of energy-dense processed foods and that largely eliminate the need for physical exertion. As a consequence of the modern 'couch potato' lifestyle, signaling pathways that mediate beneficial effects of environmental challenges on health and disease resistance are disengaged, thereby rendering people vulnerable to obesity, diabetes, cardiovascular disease, cancers and neurodegenerative disorders. Reversal of the epidemic of diseases caused by unchallenging lifestyles will require a society-wide effort to re-introduce intermittent fasting, exercise and consumption of plants containing hormetic phytochemicals into daily and weekly routines. The impact of mitochondrial protein acetylation status on neuronal function and vulnerability to neurological disorders is unknown. Here we show that the mitochondrial protein deacetylase SIRT3 mediates adaptive responses of neurons to bioenergetic, oxidative, and excitatory stress. Cortical neurons lacking SIRT3 exhibit heightened sensitivity to glutamate-induced calcium overload and excitotoxicity and oxidative and mitochondrial stress; AAV-mediated Sirt3 gene delivery restores neuronal stress resistance. In models relevant to Huntington's disease and epilepsy, Sirt3(-/-) mice exhibit increased vulnerability of striatal and hippocampal neurons, respectively. SIRT3 deficiency results in hyperacetylation of several mitochondrial proteins, including superoxide dismutase 2 and cyclophilin D. Running wheel exercise increases the expression of Sirt3 in hippocampal neurons, which is mediated by excitatory glutamatergic neurotransmission and is essential for mitochondrial protein acetylation homeostasis and the neuroprotective effects of running. Our findings suggest that SIRT3 plays pivotal roles in adaptive responses of neurons to physiological challenges and resistance to degeneration. Nrf2/skn-1, a transcription factor known to mediate adaptive responses of cells to stress, also regulates energy metabolism in response to changes in nutrient availability. The ability to locate food sources depends upon chemosensation. Here we show that Nrf2/skn-1 is expressed in olfactory interneurons, and is required for proper integration of multiple food-related sensory cues in Caenorhabditis elegans. Compared to wild type worms, skn-1 mutants fail to perceive that food density is limiting, and display altered chemo- and thermotactic responses. These behavioral deficits are associated with aberrant AIY interneuron morphology and migration in skn-1 mutants. Both skn-1-dependent AIY autonomous and non-autonomous mechanisms regulate the neural circuitry underlying multisensory integration of environmental cues related to energy acquisition.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000331-09
Application #
9549283
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Nigam, Saket M; Xu, Shaohua; Kritikou, Joanna S et al. (2017) Exercise and BDNF reduce A? production by enhancing ?-secretase processing of APP. J Neurochem 142:286-296
Kerr, Jesse S; Adriaanse, Bryan A; Greig, Nigel H et al. (2017) Mitophagy and Alzheimer's Disease: Cellular and Molecular Mechanisms. Trends Neurosci 40:151-166
Raefsky, Sophia M; Mattson, Mark P (2017) Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med 102:203-216
Geisler, John G; Marosi, Krisztina; Halpern, Joshua et al. (2017) DNP, mitochondrial uncoupling, and neuroprotection: A little dab'll do ya. Alzheimers Dement 13:582-591
Mattson, Mark P; Longo, Valter D; Harvie, Michelle (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46-58
Zhang, Shi; Eitan, Erez; Mattson, Mark P (2017) Early involvement of lysosome dysfunction in the degeneration of cerebral cortical neurons caused by the lipid peroxidation product 4-hydroxynonenal. J Neurochem 140:941-954
Marosi, Krisztina; Kim, Sang Woo; Moehl, Keelin et al. (2016) 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 139:769-781
Cheng, Aiwu; Yang, Ying; Zhou, Ye et al. (2016) Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab 23:128-42
Liu, Yong; Yang, Ying; Dong, Hui et al. (2016) Thidoredxin-2 overexpression fails to rescue chronic high calorie diet induced hippocampal dysfunction. Exp Neurol 275 Pt 1:126-32
Fang, Evandro Fei; Scheibye-Knudsen, Morten; Chua, Katrin F et al. (2016) Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol 17:308-21

Showing the most recent 10 out of 78 publications