It is becoming clear that multiple forms of cognitive ability or susceptibility to neurodegenerative disorders are affected by general systemic metabolic function. Thus, cognitive health is tightly linked to metabolic health. Previously, we have already pioneered this work by linking the progression of Huntingtons disease to a diabetic-like state. It is clear from several lines of evidence, including our own, that hormones responsible for metabolic regulation also play vital roles in cognitive function. For example, we have previously shown that Exendin-4, which is a long-acting analogue of the gut hormone Glucagon-like peptide 1 (GLP-1) can improve euglycemia, protect pancreatic islet function, improve motor coordination and reduce mutant huntingin aggregates in a mouse model of Huntingtons disease. It is likely that through the creation of multiple types of metabolically-targeted therapeutics, there will also be the creation of distinct mechanisms by which these strategies affect cognitive function. Currently we are investigating underlying metabolic dysunction in various neurological disorders, such as Alzheimer's disease, Huntington's disease, Autism Spectrum disorder, Post-partum depression, and WAGR syndrom. Our goal is to first understand how multiple types of glycemic and metabolic control can affect neuronal function and then to tailor distinct novel therapeutics which can maintain or enhance both metabolic and cognitive function.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Institute on Aging
Zip Code
Jasien, Joan; Daimon, Caitlin M; Maudsley, Stuart et al. (2012) Aging and bone health in individuals with developmental disabilities. Int J Endocrinol 2012:469235
Wu, Wells W; Shen, Rong-Fong; Park, Sung-Soo et al. (2012) Precursor ion exclusion for enhanced identification of plasma biomarkers. Proteomics Clin Appl 6:304-8
Cai, Huan; Cong, Wei-na; Ji, Sunggoan et al. (2012) Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders. Curr Alzheimer Res 9:5-17
Schwartz, Catherine M; Tavakoli, Tahereh; Jamias, Charmaine et al. (2012) Stromal factors SDF1*, sFRP1, and VEGFD induce dopaminergic neuron differentiation of human pluripotent stem cells. J Neurosci Res 90:1367-81
Martin, Bronwen; Chadwick, Wayne; Yi, Tie et al. (2012) VENNTURE--a novel Venn diagram investigational tool for multiple pharmacological dataset analysis. PLoS One 7:e36911
Stranahan, Alexis M; Martin, Bronwen; Chadwick, Wayne et al. (2012) Metabolic context regulates distinct hypothalamic transcriptional responses to antiaging interventions. Int J Endocrinol 2012:732975
Park, Sung-Soo; Wu, Wells W; Zhou, Yu et al. (2012) Effective correction of experimental errors in quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC). J Proteomics 75:3720-32
Martin, Bronwen; Chadwick, Wayne; Cong, Wei-na et al. (2012) Euglycemic agent-mediated hypothalamic transcriptomic manipulation in the N171-82Q model of Huntington disease is related to their physiological efficacy. J Biol Chem 287:31766-82
Rothman, Sarah M; Herdener, Nathan; Camandola, Simonetta et al. (2012) 3xTgAD mice exhibit altered behavior and elevated A? after chronic mild social stress. Neurobiol Aging 33:830.e1-12
Siddiqui, Sana; Fang, Meng; Ni, Bin et al. (2012) Central role of the EGF receptor in neurometabolic aging. Int J Endocrinol 2012:739428

Showing the most recent 10 out of 47 publications