LRRK2 gene mutations are a common cause of Parkinsons disease. The protein product of the gene has both kinase and GTPase activities. Because there are mutations in both kinase and GTPase domains, we consider that both activities are probably important for pathogenesis of Parkinsons disease. As such, we are trying to understand each activity in turn and how they interact. Ongoing work on this project is to map protein interactors particularly around the COR domain. We have some evidence now that there are functionally important co-chaperones that bind in this region. We have found that these interactions do allow the formation of a large protein complex that is stabilized by chaperones and has a novel function in autophagy. Mutations in the ROC and COR domains do affect this function but do not affect protein interactions. Ongoing work is aimed at understanding how the activities of LRRK2 impact complex function. We have also developed an approach to find novel modulators of LRRK2 function, initially via phosphorylation. We are currently trying to understand how this relates to cellular functions identified above.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000937-04
Application #
8736654
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2013
Total Cost
$522,994
Indirect Cost
Name
National Institute on Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Blauwendraat, Cornelis; Reed, Xylena; Kia, Demis A et al. (2018) Frequency of Loss of Function Variants in LRRK2 in Parkinson Disease. JAMA Neurol :
Liu, Zhiyong; Bryant, Nicole; Kumaran, Ravindran et al. (2018) LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum Mol Genet 27:385-395
Pellegrini, Laura; Hauser, David N; Li, Yan et al. (2018) Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice. Hum Mol Genet 27:3257-3271
Tomkins, James E; Dihanich, Sybille; Beilina, Alexandra et al. (2018) Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins. Proteomics 18:e1700444
Cookson, Mark R (2017) Mechanisms of Mutant LRRK2 Neurodegeneration. Adv Neurobiol 14:227-239
Cookson, Mark R (2016) Cellular functions of LRRK2 implicate vesicular trafficking pathways in Parkinson's disease. Biochem Soc Trans 44:1603-1610
Langston, Rebekah G; Rudenko, Iakov N; Cookson, Mark R (2016) The function of orthologues of the human Parkinson's disease gene LRRK2 across species: implications for disease modelling in preclinical research. Biochem J 473:221-32
Roosen, Dorien A; Cookson, Mark R (2016) LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegener 11:73
Cookson, Mark R (2015) LRRK2 Pathways Leading to Neurodegeneration. Curr Neurol Neurosci Rep 15:42
Civiero, Laura; Cirnaru, Maria Daniela; Beilina, Alexandra et al. (2015) Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain. J Neurochem 135:1242-56

Showing the most recent 10 out of 20 publications