We have used a murine in vivo infection selection model to isolate a hypervirulent C. trachomatis human strain. The virulent isolate produces infection and disease in the mouse female genital tract with similar pathology to that of human infection. These findings are the first description of a human strain that is virulent for the mouse thereby providing a much needed small animal model for the study of human infection and disease. Remarkably, comparative genomic studies of virulent and avirulent clonal strains revealed a mutation in only a single gene unambiguously identifying the gene (CT153) as a critical in vivo virulence factor. These findings will significantly impact our understanding of the pathogenesis and pathophysiology human infections. Moreover, these findings will provide new approaches to small animal modeling systems using human isolates that should advance future efforts in chlamydial vaccine design and development. Chlamydia trachomatis is the etiological agent of trachoma, the leading cause of preventable blindness. Trachoma presents distinct clinical syndromes ranging from mild and self-limiting to severe inflammatory disease. The underlying host and pathogen factors responsible for these diverse clinical outcomes are unclear. There is no available small animal model that mimics human infection disease. We have isolated a hypervirulent human strain that is highly infectious for the mouse that causes infection and disease very similar to that characteristic of human infection. By comparative genomic analysis we found that virulent and avirulent isogenic isolates have mutations in only a single gene (CT135);strongly implicating this gene in chlamydial virulence and pathogenesis. These findings have significant implications for human genotyping studies to identify individuals at greater risk of post-infection complications and alternate therapeutic management. Future studies will focus on understanding the function of CT135. Defining its role in pathogenesis could provide new insights important to vaccine design and development.

Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2009
Total Cost
$793,353
Indirect Cost
City
State
Country
Zip Code
Patton, Michael John; Chen, Chih-Yu; Yang, Chunfu et al. (2018) Plasmid Negative Regulation of CPAF Expression Is Pgp4 Independent and Restricted to Invasive Chlamydia trachomatis Biovars. MBio 9:
Patton, Dorothy L; Sweeney, Yvonne C; Baldessari, Audrey E et al. (2018) The Chlamydia trachomatis Plasmid and CT135 Virulence Factors Are Not Essential for Genital Tract Infection or Pathology in Female Pig-Tailed Macaques. Infect Immun 86:
Yang, Chunfu; Kari, Laszlo; Sturdevant, Gail L et al. (2017) Chlamydia trachomatis ChxR is a transcriptional regulator of virulence factors that function in in vivo host-pathogen interactions. Pathog Dis 75:
Yang, Chunfu; Whitmire, William M; Sturdevant, Gail L et al. (2017) Infection of Hysterectomized Mice with Chlamydia muridarum and Chlamydia trachomatis. Infect Immun 85:
Patton, Michael John; McCorrister, Stuart; Grant, Chris et al. (2016) Chlamydial Protease-Like Activity Factor and Type III Secreted Effectors Cooperate in Inhibition of p65 Nuclear Translocation. MBio 7:
Porcella, Stephen F; Carlson, John H; Sturdevant, Daniel E et al. (2015) Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis. Infect Immun 83:534-43
Song, Lihua; Carlson, John H; Zhou, Bing et al. (2014) Plasmid-mediated transformation tropism of chlamydial biovars. Pathog Dis 70:189-93
Bao, Xiaofeng; Gylfe, Asa; Sturdevant, Gail L et al. (2014) Benzylidene acylhydrazides inhibit chlamydial growth in a type III secretion- and iron chelation-independent manner. J Bacteriol 196:2989-3001
Sturdevant, Gail L; Caldwell, Harlan D (2014) Innate immunity is sufficient for the clearance of Chlamydia trachomatis from the female mouse genital tract. Pathog Dis 72:70-3
Kari, Laszlo; Southern, Timothy R; Downey, Carey J et al. (2014) Chlamydia trachomatis polymorphic membrane protein D is a virulence factor involved in early host-cell interactions. Infect Immun 82:2756-62

Showing the most recent 10 out of 24 publications