As recent data are demonstrating that immunological responses vary dramatically across different tissues, new scientific approaches are needed to provide a more cohesive, detailed, and contextual analysis of tissue-specific immunity, as this will provide more targeted approaches to ameliorate disease. Indeed, it is becoming clear that tissue specific immunity likely involves cross talk between the epithelium, microbes, and the immune system. The Tissue Immunity and Repair program made progress in the following areas over the past year: 1. During HIV/SIV infection, mucosal immune system dysfunction and systemic immune activation are associated with progression to AIDS; however, it is unclear to what extent pre-existing gastrointestinal damage relates to disease progression postinfection. Pigtail macaques (PTM) are an excellent model in which to assess mucosal dysfunction in relation to HIV/SIV pathogenesis, as the majority of these animals have high levels of gastrointestinal damage, immune activation, and microbial translocation prior to infection, and rapidly progress to AIDS upon SIV infection. In study this past year, we characterized the mucosal immune environment prior to and throughout SIV infection in 13 uninfected PTM and 9 SIV-infected PTM, of which 3 were slow progressors. This small subset of slow progressors had limited innate immune activation in mucosal tissues in the periphery, which was associated with a more intact colonic epithelial barrier. Furthermore, we found that preinfection levels of microbial translocation, as measured by LPS-binding protein, in PTM correlated with the rate of progression to AIDS. These data suggest that pre-existing levels of microbial translocation and gastrointestinal tract dysfunction may influence the rate of HIV disease progression. 2. HIV infection results in gastrointestinal (GI) tract damage, microbial translocation, and immune activation, which are not completely ameliorated with suppression of viremia by antiretroviral (ARV) therapy. Furthermore, increased morbidity and mortality of ARV-treated HIV-infected individuals is associated with these dysfunctions. Thus, to enhance GI tract physiology, we treated SIV-infected pigtail macaques with ARVs, probiotics, and prebiotics or with ARVs alone. This synbiotic treatment resulted in increased frequency and functionality of GI tract APCs, enhanced reconstitution and functionality of CD4+ T cells, and reduced fibrosis of lymphoid follicles in the colon. Thus, ARV synbiotic supplementation in HIV-infected individuals improves GI tract immunity and thereby mitigates inflammatory sequelae, ultimately improving prognosis. 3. How the immune system adapts to malnutrition to sustain immunity at barrier surfaces, such as the intestine, remains unclear. Vitamin A deficiency is one of the most common micronutrient deficiencies and is associated with profound defects in adaptive immunity. In the past year, we found that type 3 innate lymphoid cells (ILC3s) are severely diminished in vitamin A-deficient settings, which results in compromised immunity to acute bacterial infection. However, vitamin A deprivation paradoxically resulted in dramatic expansion of interleukin-13 (IL-13)-producing ILC2s and resistance to nematode infection in mice, which revealed that ILCs are primary sensors of dietary stress. Further, these data indicate that, during malnutrition, a switch to innate type 2 immunity may represent a powerful adaptation of the immune system to promote host survival in the face of ongoing barrier challenges.Recent work further explores the metabolic requirements of innate lymphoid cells in the context of malnutrition 4. In asthma, airflow obstruction is thought to result primarily from inflammation-triggered airway smooth muscle (ASM) contraction. However, anti-inflammatory and smooth muscle-relaxing treatments are often temporary or ineffective. Overproduction of the mucin MUC5AC is an additional disease feature that, while strongly associated pathologically, is poorly understood functionally. In this collaborative study we showed that Muc5ac is a central effector of allergic inflammation that is required for airway hyperreactivity (AHR) to methacholine (MCh). In mice bred on two well-characterized strain backgrounds (C57BL/6 and BALB/c) and exposed to two separate allergic stimuli (ovalbumin and Aspergillus extract), genetic removal of Muc5ac abolishes AHR. Residual MCh responses are identical to unchallenged controls, and although inflammation remains intact, heterogeneous mucous occlusion decreases by 74%. Thus, whereas inflammatory effects on ASM alone are insufficient for AHR, Muc5ac-mediated plugging is an essential mechanism. Inhibiting MUC5AC may be effective for treating asthma and other lung diseases where it is also overproduced.
Showing the most recent 10 out of 19 publications