HBcAg (cAg) has been expressed in E.coli were it assembles in the bacterial cytoplasm into icosahedral capsids. Deletion of the polybasic C-terminal 34 residues (protamine domain) produces assembly competent protein (Cp149) which is suitable for structural analysis. The structure of the capsids has been previously determined by cryo-electron microscopy and by X-ray crystallography. Native HBeAg (eAg) is a secreted soluble protein which is thought to modulate both the innate and adaptive immune responses so as to favor persistent infection as well being an important clinical marker. This protein is truncated at position 149 and in addition contains a 10 residue N-terminal extension derived from partial processing of precursor protein. The structure of the eAg has not been determined. We have performed biophysical analysis on the eAg which have highlighted the importance of disulfide linkages in controlling conformation and solubility of the protein. Using a similar approach as for structural determination of the HIV-1 Rev, a specific antibody was used to mediate the successful crystallization of eAg. Structural determination is being performed by X-ray crystallography from which expect to obtain more detailed insight into the structural and conformation differences with the cAg. Previous structural determinations of nucleocapsid-antibody immune complexes by cryo-electron microscopy were performed with a panel of murine antibodies. This work has been extended to included human antibodies from clinical samples. The results indicate binding to distinct regions on the capsid surface (epitopes) which we had previously identified using the murine antibodies. This work, together our previous description of an immune complex of capsids and an antibody representative of the surface immunoglobulin from naive B-cells, provide one of the most complete pictures of the interaction of antibodies with a viral protein system related to an important human disease. Using a rabbit antibody library, monoclonal antibodies (mAbs) were selected then humanized to produce chimeric mAb fragment antigen binding portions (Fab). Fabs against the HBV capsid proteins were selected for high affinity binding to the capsid subunits. The binding of the antibodies prevent the assembly of the capsids (a central functional and structural component of the HBV virus) and may with development provide useful anti-HBV reagents.

Project Start
Project End
Budget Start
Budget End
Support Year
16
Fiscal Year
2011
Total Cost
$653,427
Indirect Cost
Name
National Institute of Arthritis and Musculoskeletal and Skin Diseases
Department
Type
DUNS #
City
State
Country
Zip Code
Bereszczak, Jessica Z; Havlik, Marlene; Weiss, Victor U et al. (2014) Sizing up large protein complexes by electrospray ionisation-based electrophoretic mobility and native mass spectrometry: morphology selective binding of Fabs to hepatitis B virus capsids. Anal Bioanal Chem 406:1437-46
Bereszczak, Jessica Z; Watts, Norman R; Wingfield, Paul T et al. (2014) Assessment of differences in the conformational flexibility of hepatitis B virus core-antigen and e-antigen by hydrogen deuterium exchange-mass spectrometry. Protein Sci 23:884-96
DiMattia, Michael A; Watts, Norman R; Stahl, Stephen J et al. (2013) Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein. Structure 21:133-142
Bereszczak, Jessica Z; Rose, Rebecca J; van Duijn, Esther et al. (2013) Epitope-distal effects accompany the binding of two distinct antibodies to hepatitis B virus capsids. J Am Chem Soc 135:6504-12
Wu, Weimin; Chen, Zhaochun; Cheng, Naiqian et al. (2013) Specificity of an anti-capsid antibody associated with Hepatitis B Virus-related acute liver failure. J Struct Biol 181:53-60
Kandiah, Eaazhisai; Watts, Norman R; Cheng, Naiqian et al. (2012) Cryo-EM study of Hepatitis B virus core antigen capsids decorated with antibodies from a human patient. J Struct Biol 177:145-51
Watts, Norman R; Conway, James F; Cheng, Naiqian et al. (2011) Role of the propeptide in controlling conformation and assembly state of hepatitis B virus e-antigen. J Mol Biol 409:202-13
Uetrecht, Charlotte; Watts, Norman R; Stahl, Stephen J et al. (2010) Subunit exchange rates in Hepatitis B virus capsids are geometry- and temperature-dependent. Phys Chem Chem Phys 12:13368-71
Watts, Norman R; Vethanayagam, Joe G; Ferns, R Bridget et al. (2010) Molecular basis for the high degree of antigenic cross-reactivity between hepatitis B virus capsids (HBcAg) and dimeric capsid-related protein (HBeAg): insights into the enigmatic nature of the e-antigen. J Mol Biol 398:530-41
Uetrecht, Charlotte; Versluis, Cees; Watts, Norman R et al. (2008) Stability and shape of hepatitis B virus capsids in vacuo. Angew Chem Int Ed Engl 47:6247-51

Showing the most recent 10 out of 12 publications