During normal development progenitor cells of many tissues undergo progressive restriction of pluripotency, epithelial-to-mesenchymal transition, proliferation, migration, and differentiation. Most, if not all, of these events involve modifications of cell-cell and cell-matrix adhesion, and abnormal modifications of these adhesion systems are often associated with the formation of tumors. The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are frequently over-expressed in a wide variety of cancers, including breast, small-cell lung and gastrointestinal cancers, melanomas, and neuroblastomas. Using the Xenopus embryonic system, we have demonstrated that signaling mediated by the intracellular domain of ephrinB affects cell-cell adhesion, and that this activity can be modulated by interaction with an activated FGF receptor. The transmembrane ephrinB1 protein is a bi-directional signaling molecule that signals through its cytoplasmic domain to promote cellular movements into the eye field, whereas activation of the fibroblast growth factor receptor (FGFR) represses these movements and retinal fate. In Xenopus embryos, ephrinB1 plays a role in retinal progenitor cell movement into the eye field through an interaction with the scaffold protein Dishevelled (Dsh). However, the mechanism by which the FGFR may regulate this cell movement is unknown. Here we present evidence that FGFR-induced repression of retinal fate is dependent upon phosphorylation within the intracellular domain of ephrinB1. We demonstrate that phosphorylation of tyrosines 324 and 325 within ephrinB1 disrupts the ephrinB1/Dsh interaction, thus modulating retinal progenitor movement that is dependent on the planar cell polarity (PCP) pathway. These results provide mechanistic insight into how FGF signaling modulates ephrinB1 control of retinal progenitor movement within the eye field.