Our most recent results in this project include: (1)EGFR and c-Met are involved in both activation and differentiation of hepatic progenitor cell (HPC) . However, the underlying mechanisms have not been elucidated. Here we have addressed the impact of EGFR and c-Met signaling on the differentiation of HPC into heptatocytic and biliary epithelial lineages using clonally derived progenitor cell lines from EGFRfl/fl and Met fl/fl conditional knockout mice.Precise control of lineage commitment and maintenance of stem/progenitor cells is crucialfor regeneration of diseased liver. We have used a combination of genetic and pharmacological approaches to address the role of Egfr and Met, two principal liver receptor tyrosine kinases (RTK), in hepatocyte-billiary epithelial lineage decisions of hepatic progenitor cells (HPCs). We have shown that Met and Egfr collaborate to increase the HPC self-renewal growth through activation of ERK pathway. Met is a key RTK responsible for hepatocyte differentiation via strong activation of AKT and STAT3, whereas Egfr is an essential mediator of the Notch1 pathway required for cholangiocyte specification and branching morphogenesis. Unlike Met, genetic loss of Egfr was beneficial for HPC-mediated liver regeneration by switching HPC differentiation towards hepatocytes rather than cholangiocytes. This establishes both cooperative and uniquefunctions of Met and Egfr regulatory network as a mechanism of HPC expansion and directed differentiation with implications for regenerative therapies;and (2)HGF/c-Met signaling plays a pivotal role in hepatocyte survival and tissue remodeling during liver regeneration. HGF treatment accelerates resolution of fibrosis in experimental animal models. We have utilized Met(fl/fl);Alb-Cre(+/-) conditional knockout mice and a carbon tetrachloride(CCl(4))-induced liver fibrosis model to formally address the role of c-Met signaling in hepatocytes in the context of chronic tissue injury. Histological changes during injury (4weeks) and healing phase (4weeks) were monitored by immunohistochemistry;expression levels of selected key fibrotic molecules were evaluated by western blotting, and time-dependent global transcriptomic changes were examined using a microarray platform. Loss of hepatocyte c-Met signaling altered hepatic microenvironment and aggravated hepatic fibrogenesis. Greater liver damage was associated with decreased hepatocyte proliferation, excessive stellate cell activation and rapid dystrophic calcification of necrotic areas. Global transcriptome analysis revealed a broad impact of c-Met on critical signaling pathways associated with fibrosis. Loss of hepatocyte c-Met caused a strong deregulation of chemotactic and inflammatory signaling (MCP-1, RANTES, Cxcl10) in addition to modulation of genes involved in reorganization of the cytoskeletal network (Actb, Tuba1a, Tuba8), intercellular communications and adhesion (Adam8, Icam1, Itgb2), control of cell proliferation (Ccng2, Csnk2a, Cdc6, cdk10), DNA damage and stress response (Rad9, Rad52, Ercc4, Gsta1 and 2, Jun). Our study demonstrates that deletion of c-Met receptor in hepatocytes results in pronounced changes in hepatic metabolism and microenvironment, and establishes an essential role for c-Met in maintaining the structural integrity and adaptive plasticity of the liver under adverse conditions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010638-09
Application #
8552759
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2012
Total Cost
$254,396
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Clavijo-Cornejo, Denise; Enriquez-Cortina, Cristina; López-Reyes, Alberto et al. (2013) Biphasic regulation of the NADPH oxidase by HGF/c-Met signaling pathway in primary mouse hepatocytes. Biochimie 95:1177-84
Coulouarn, Cédric; Corlu, Anne; Glaise, Denise et al. (2012) Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res 72:2533-42
Ishikawa, Tsuyoshi; Factor, Valentina M; Marquardt, Jens U et al. (2012) Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice. Hepatology 55:1215-26
Marquardt, Jens U; Seo, Daekwan; Gómez-Quiroz, Luis E et al. (2012) Loss of c-Met accelerates development of liver fibrosis in response to CCl(4) exposure through deregulation of multiple molecular pathways. Biochim Biophys Acta 1822:942-51
Thorgeirsson, S S (2012) The central role of the c-Met pathway in rebuilding the liver. Gut 61:1105-6
Hwang, Chang-Il; Matoso, Andres; Corney, David C et al. (2011) Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci U S A 108:14240-5
Factor, Valentina M; Seo, Daekwan; Ishikawa, Tsuyoshi et al. (2010) Loss of c-Met disrupts gene expression program required for G2/M progression during liver regeneration in mice. PLoS One 5:
Ishibe, Shuta; Karihaloo, Anil; Ma, Hong et al. (2009) Met and the epidermal growth factor receptor act cooperatively to regulate final nephron number and maintain collecting duct morphology. Development 136:337-45
Gomez-Quiroz, Luis E; Factor, Valentina M; Kaposi-Novak, Pal et al. (2008) Hepatocyte-specific c-Met deletion disrupts redox homeostasis and sensitizes to Fas-mediated apoptosis. J Biol Chem 283:14581-9
del Castillo, Gaelle; Factor, Valentina M; Fernandez, Margarita et al. (2008) Deletion of the Met tyrosine kinase in liver progenitor oval cells increases sensitivity to apoptosis in vitro. Am J Pathol 172:1238-47