The long-standing focus of our laboratory program involves the radiation and microenvironmental stress response. We are now focusing on """"""""radiation inducible molecular targets"""""""" that is, exploring the use of fractionated radiation to induce a cellular phenotype that makes the cell susceptible for molecular targeted therapy. In essence, radiation would set up the tumor for enhanced drug killing. This project has now demonstrated that different dose sizes of radiation (10 Gy x1, 2 Gy x5 and 1 Gy x10) produce different phenotypes. We have demonstrated that the cells post-radiation are more drug sensitive for at least 1 drug and much more work is in progress but we are now working on combinations of drugs. This work fits into molecular targeted cancer treatment using both the """"""""non-oncogene addiction targets"""""""" and """"""""synthetic lethality""""""""We have made progress in studying the inducible miRNA and proteins. We have expanded to add a p53 proficient cell line. Two manuscripts are in now published (Radiation Research Journal). A proteomics paper is in preparation. Indirectly related to this work are efforts being done in the Office of the Assistant Secretary for Preparedness and Response in Health and Human Services (HHS). I am heading a group developing civilian medical response planning for radiological and nuclear terrorism and other events. This involves planning, policy, and normal tissue injury-related science. Medical countermeasures are being developed through NIAID support in the Centers for Medical Countermeasures Against Radiation (CMCR). This overall program has major impact to U.S. preparedness and also has a spin-off for normal tissue injury from radiation and the potential for post-exposure mitigators and treatments. We are working with other agencies (NIAID and Dept of Defense) on the potential of bringing these mitigators into cancer care.The critical importance of the NCI- HHS linkage is bringing up-to-date scientficia thinking to medical countermeasure development and diagnosis

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010670-08
Application #
8552771
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2012
Total Cost
$738,236
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Eke, Iris; Makinde, Adeola Y; Aryankalayil, Molykutty J et al. (2018) Long-term Tumor Adaptation after Radiotherapy: Therapeutic Implications for Targeting Integrins in Prostate Cancer. Mol Cancer Res 16:1855-1864
Aryankalayil, Molykutty J; Chopra, Sunita; Levin, Joel et al. (2018) Radiation-Induced Long Noncoding RNAs in a Mouse Model after Whole-Body Irradiation. Radiat Res 189:251-263
Eke, Iris; Makinde, Adeola Y; Aryankalayil, Molykutty J et al. (2018) Exploiting Radiation-Induced Signaling to Increase the Susceptibility of Resistant Cancer Cells to Targeted Drugs: AKT and mTOR Inhibitors as an Example. Mol Cancer Ther 17:355-367
Aryankalayil, Molykutty J; Chopra, Sunita; Makinde, Adeola et al. (2018) Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model. Biomarkers :1-15
Ahmed, Mansoor M; Coleman, C Norman; Mendonca, Marc et al. (2018) Workshop Report for Cancer Research: Defining the Shades of Gy: Utilizing the Biological Consequences of Radiotherapy in the Development of New Treatment Approaches-Meeting Viewpoint. Cancer Res 78:2166-2170
Vanpouille-Box, Claire; Alard, Amandine; Aryankalayil, Molykutty J et al. (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618
Coleman, C Norman (2017) The Radiation Stress Response: Of the People, By the People and For the People. Radiat Res 187:129-146
FitzGerald, Thomas J; Bishop-Jodoin, Maryann; Followill, David S et al. (2016) Imaging and Data Acquisition in Clinical Trials for Radiation Therapy. Int J Radiat Oncol Biol Phys 94:404-11
Makinde, Adeola Y; Eke, Iris; Aryankalayil, Molykutty J et al. (2016) Exploiting Gene Expression Kinetics in Conventional Radiotherapy, Hyperfractionation, and Hypofractionation for Targeted Therapy. Semin Radiat Oncol 26:254-60
Coleman, C Norman; Higgins, Geoff S; Brown, J Martin et al. (2016) Improving the Predictive Value of Preclinical Studies in Support of Radiotherapy Clinical Trials. Clin Cancer Res 22:3138-47

Showing the most recent 10 out of 29 publications