Role of IKKalpha in the early B cells development in bone marrow. Multiple transcription factors regulate B cell commitment, which coordinates with myeloid-erythroid lineage differentiation. NF-kappaB has long been speculated to regulate early B cell development;however, this issue remains controversial. IKKalpha is required for splenic B cell maturation, but not for bone marrow (BM) B cell development. Here, we unexpectedly found defective BM B cell development and increased myeloid-erythroid lineages in kinase-dead IKKalpha (KA/KA) knock-in mice. Markedly increased cytosolic p100, an NF-kappaB2 inhibitory form, and reduced nuclear NF-kappaB p65, RelB, p50, and p52, as well as IKKalpha, were observed in KA/KA splenic and BM B cells. Several B- and myeloid-erythroid-cell regulators, including Pax5, were deregulated in KA/KA BM B cells. Using fetal liver and BM congenic transplants, and deleting IKKalpha from early hematopoietic cells in mice, this defect was identified as B cell intrinsic and as an early event during hematopoiesis. Reintroducing IKKalpha, Pax5, or combined NF-kappaB molecules promoted B cell development, but repressed myeloid-erythroid cell differentiation in KA/KA BM B cells. Together, these results demonstrate that IKKalpha regulates B-lineage commitment via combined canonical and noncanonical NF-kappaB transcriptional activities to target Pax5 expression during hematopoiesis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC011422-03
Application #
8938109
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Diamanti, Michaela A; Gupta, Jalaj; Bennecke, Moritz et al. (2017) IKK? controls ATG16L1 degradation to prevent ER stress during inflammation. J Exp Med 214:423-437
Chen, Xin; Willette-Brown, Jami; Wu, Xueqiang et al. (2015) IKK? is required for the homeostasis of regulatory T cells and for the expansion of both regulatory and effector CD4 T cells. FASEB J 29:443-54
Balkhi, Mumtaz Yaseen; Willette-Brown, Jami; Zhu, Feng et al. (2012) IKK?-mediated signaling circuitry regulates early B lymphopoiesis during hematopoiesis. Blood 119:5467-77