Cell and gene therapy products must be tested for sterility, stability, purity and potency. In addition, its important to test clinical cell therapy products for identity, consistency and comparability. Testing cellular and gene therapies is challenging. These therapies are generally collected from a single person so the quantity of material available to test is limited. They are typically transfused immediately or shortly after they are produced so there is a very limited amount of time to complete the assays. Many of these therapies are complex cells that have multiple functions. The cell functions that are critical to the clinical effectiveness of these therapies are often not known. Traditionally, analytic assays such as flow cytometry, ELISA, ELISPOT and cell culture have been used to analyze cellular and gene therapies. While these assays have proven to be very useful, the number and types of factors that can be analyzed with these assays is limited. We have been investigating the use of gene and micro RNA expression assays for the analysis of cellular therapies. These assays can require the use of only small quantities of cells and can be used to assess the expression of the entire transcriptome. We have been testing the ability of global gene and micro RNA expression profiling to determine the utility of these assays for assessing the stability, purity and potency of cellular therapies. We have shown that gene expression profiling can detect changes in stored cells and detect differences between peripheral blood leukocytes (T cells, B cells and monocytes) and hematopoietic stem cells. Gene expression profiling has also been able to detect differences between immature and mature dendritic cells (DCs) and has been useful for comparing mature DCs produced using different combinations of maturation agents. Bone Marrow Stromal Cells (BMSCs) are being use to modulate the immune system and for a number of regenerative medicine applications including bone repair. BMSCs are a heterogeneous population of cells and a small number of BMSCs are skeletal stem cells which are important for regenerative medicine clinical applications. We have been investing BMSCs to determine markers that identify skeletal stem cells. We are using single cell analysis and next generation DNA sequencing to identify markers for the skeletal stem cells. Chimeric Antigen Receptor (CAR) T cells are being used to treat a number of hematologic malignancies, however, clinical outcomes have varied among recipients of these therapies and some of this variability is likely due to variability, and hence, differences in potency among CAR T cell products. We are using gene expression analysis, mRNA analysis, single cell analysis and next generation sequencing to identify factors associated with the clinical potency of these cells.

Agency
National Institute of Health (NIH)
Institute
Clinical Center (CLC)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIACL002119-10
Application #
9549452
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Clinical Center
Department
Type
DUNS #
City
State
Country
Zip Code
Jin, Ping; Chen, Wenjing; Ren, Jiaqiang et al. (2018) Plasma from some cancer patients inhibits adenoviral Ad5f35 vector transduction of dendritic cells. Cytotherapy 20:728-739
Castiello, Luciano; Sabatino, Marianna; Ren, Jiaqiang et al. (2017) Expression of CD14, IL10, and Tolerogenic Signature in Dendritic Cells Inversely Correlate with Clinical and Immunologic Response to TARP Vaccination in Prostate Cancer Patients. Clin Cancer Res 23:3352-3364
Gulley, James L; Berzofsky, Jay A; Butler, Marcus O et al. (2017) Immunotherapy biomarkers 2016: overcoming the barriers. J Immunother Cancer 5:29
Stroncek, David F; Butterfield, Lisa H; Cannarile, Michael A et al. (2017) Systematic evaluation of immune regulation and modulation. J Immunother Cancer 5:21
Liu, Shutong; Ren, Bo; Gao, Hang et al. (2017) Over-expression of BAG-1 in head and neck squamous cell carcinomas (HNSCC) is associated with cisplatin-resistance. J Transl Med 15:189
Ascierto, Paolo A; Agarwala, Sanjiv S; Ciliberto, Gennaro et al. (2017) Future perspectives in melanoma research ""Melanoma Bridge"", Napoli, November 30th-3rd December 2016. J Transl Med 15:236
Liu, Shutong; de Castro, Luis F; Jin, Ping et al. (2017) Manufacturing Differences Affect Human Bone Marrow Stromal Cell Characteristics and Function: Comparison of Production Methods and Products from Multiple Centers. Sci Rep 7:46731
Weinstein, Aliyah M; Chen, Lu; Brzana, Emily A et al. (2017) Tbet and IL-36? cooperate in therapeutic DC-mediated promotion of ectopic lymphoid organogenesis in the tumor microenvironment. Oncoimmunology 6:e1322238
Jin, Ping; Zhao, Yuanlong; Liu, Hui et al. (2016) Interferon-? and Tumor Necrosis Factor-? Polarize Bone Marrow Stromal Cells Uniformly to a Th1 Phenotype. Sci Rep 6:26345
Roychoudhuri, Rahul; Eil, Robert L; Clever, David et al. (2016) The transcription factor BACH2 promotes tumor immunosuppression. J Clin Invest 126:599-604

Showing the most recent 10 out of 50 publications