Experiments are being conducted to assess the direct effects of abused drugs, or drugs proposed as treatments for drug abuse, on on-going behavior, on brain neurochemistry, as discriminative stimuli and on physiological function. Currently, studies are focusing on cannabinoids, nicotine, the constituents of psychoactive bath salts products (cathinones), cocaine and methamphetamine. Manipulations of the endocannabinoid system could potentially produce therapeutic effects with minimal risk of adverse cannabis-like side effects. Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of the cannabinoid-receptor agonist, anandamide, and show promise for treating a wide range of disorders. However, their effects on learning and memory have not been fully characterized. We determined the effects of five structurally different FAAH inhibitors in an animal model of working memory known to be sensitive to impairment by delta-9 tetrahydrocannabinol (THC). A delayed nonmatching-to-position procedure was used in rats. Illuminated nosepoke holes were used to provide sample cues (left versus right) and record responses (correct versus incorrect) after delays ranging from 0 to 28 s. Various test drugs were given acutely up to two times per week before daily sessions. One FAAH inhibitor, AM3506 (3 mg/kg), decreased accuracy in the memory task. Four other FAAH inhibitors (URB597, URB694, PF-04457845, and ARN14633) and a monoacylglycerol lipase inhibitor (JZL184, which blocks the degradation of the endocannabinoid 2-arachidonoylglycerol) had no effect. Testing of AM3506 in combination with antagonists for receptors known to be affected by anandamide and other fatty acid amides indicated that the impairment induced by AM3506 was mediated by cannabinoid CB1 receptors, and not by alpha-type peroxisome proliferator-activated receptors (PPAR-alpha) or vanilloid transient receptor potential cation channels (TRPV1). FAAH inhibitors differ with respect to their potential for memory impairment, abuse liability, and probably other cannabis-like effects, and they should be evaluated individually for specific therapeutic and adverse effects. Methamphetamine abuse is linked with brain abnormalities, but its peripheral effects constitute an integral aspect of long-term methamphetamine use. Eight male rhesus monkeys with long histories of intravenous methamphetamine self-administration were evaluated 1 day, and 1, 4, 12, 26, and 52 weeks after their last methamphetamine self-administration session. On test days, isoflurane-anesthetized animals received a 0.35 mg/kg IV methamphetamine challenge. A control group consisted of 10 age and gender matched drug nave monkeys. Cardiovascular responses to methamphetamine were followed for 2.5 h. Echocardiograms were acquired at 3 and 12 months of abstinence and in the control animals. No pre-methamphetamine baseline differences existed among 7 physiological measures across all conditions and controls. As expected, methamphetamine increased heart rate and blood pressure in controls. However, immediately following the self-administration period, the blood pressure response to methamphetamine challenge was reduced when compared to control monkeys. The peak and 150-min average heart rate increases, as well as peak blood pressure increases following methamphetamine were significantly elevated between weeks 12 to 26 of abstinence. These data indicate the development of tolerance followed by sensitization to methamphetamine cardiovascular effects. Echocardiography demonstrated decreased left ventricular ejection fraction and cardiac output at 3 months of abstinence. Importantly, both cardiovascular sensitization and cardiotoxicity appeared to be reversible as they returned toward control group levels after 1 year of abstinence. Enhanced cardiovascular effects may occur after prolonged abstinence in addicts relapsing to methamphetamine and may underlie clinically reported acute cardiotoxic events.

Project Start
Project End
Budget Start
Budget End
Support Year
31
Fiscal Year
2016
Total Cost
Indirect Cost
Name
National Institute on Drug Abuse
Department
Type
DUNS #
City
State
Country
Zip Code
Delis, Foteini; Polissidis, Alexia; Poulia, Nafsika et al. (2016) Attenuation of Cocaine-Induced Conditioned Place Preference and Motor Activity via Cannabinoid CB2 Receptor Agonism and CB1 Receptor Antagonism in Rats. Int J Neuropsychopharmacol :
Krasnova, Irina N; Justinova, Zuzana; Cadet, Jean Lud (2016) Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berl) 233:1945-62
Panlilio, L V; Justinova, Z; Trigo, J M et al. (2016) Screening Medications for the Treatment of Cannabis Use Disorder. Int Rev Neurobiol 126:87-120
Schindler, Charles W; Redhi, Godfrey H; Vemuri, Kiran et al. (2016) Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys. Neuropsychopharmacology 41:2283-93
Vaupel, D B; Schindler, C W; Chefer, S et al. (2016) Delayed emergence of methamphetamine's enhanced cardiovascular effects in nonhuman primates during protracted methamphetamine abstinence. Drug Alcohol Depend 159:181-9
Schindler, Charles W; Thorndike, Eric B; Suzuki, Masaki et al. (2016) Pharmacological mechanisms underlying the cardiovascular effects of the ""bath salt"" constituent 3,4-methylenedioxypyrovalerone (MDPV). Br J Pharmacol 173:3492-3501
Panlilio, Leigh V; Thorndike, Eric B; Nikas, Spyros P et al. (2016) Effects of fatty acid amide hydrolase (FAAH) inhibitors on working memory in rats. Psychopharmacology (Berl) 233:1879-88
Schindler, Charles W; Thorndike, Eric B; Goldberg, Steven R et al. (2016) Reinforcing and neurochemical effects of the ""bath salts"" constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats. Psychopharmacology (Berl) 233:1981-90
Justinova, Zuzana; Panlilio, Leigh V; Secci, Maria E et al. (2015) The Novel Metabotropic Glutamate Receptor 2 Positive Allosteric Modulator, AZD8529, Decreases Nicotine Self-Administration and Relapse in Squirrel Monkeys. Biol Psychiatry 78:452-62
Astarita, Giuseppe; Avanesian, Agnesa; Grimaldi, Benedetto et al. (2015) Methamphetamine accelerates cellular senescence through stimulation of de novo ceramide biosynthesis. PLoS One 10:e0116961

Showing the most recent 10 out of 51 publications