We propose to study three brain areas known as the habenula, ventral midbrain and anterior raphe areas. The habenula appears to send positive and negative emotional signals to both ventral midbrain and anterior raphe areas. These two areas contain neurons that make brain chemicals called dopamine and serotonin, whose signals can affect many brain structures involved in motivation and learning. Indeed, dysregulation of both dopamine and serotonin signals has been linked to psychiatric disorders including drug addiction and mood disorders. We will use optogenetics (see the 1st paragraph of this section) to selectively stimulate and inhibit habenular signals affecting the ventral midbrain, and anterior raphe areas, to determine how they play roles in controlling dopamine, serotonin and motivated behaviors in mice. Currently, we are still at the stage of setting up equipment and refining procedures. We should be able to begin collecting data on the proposed questions in coming months.

Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2011
Total Cost
$346,469
Indirect Cost
Name
National Institute on Drug Abuse
Department
Type
DUNS #
City
State
Country
Zip Code
Wang, Dong V; Viereckel, Thomas; Zell, Vivien et al. (2017) Disrupting Glutamate Co-transmission Does Not Affect Acquisition of Conditioned Behavior Reinforced by Dopamine Neuron Activation. Cell Rep 18:2584-2591
Talishinsky, Aleksandr D; Nicolas, Celine; Ikemoto, Satoshi (2017) Interaction of chronic food restriction and methylphenidate in sensation seeking of rats. Psychopharmacology (Berl) 234:2197-2206
Yau, Hau-Jie; Wang, Dong V; Tsou, Jen-Hui et al. (2016) Pontomesencephalic Tegmental Afferents to VTA Non-dopamine Neurons Are Necessary for Appetitive Pavlovian Learning. Cell Rep 16:2699-2710
Ikemoto, Satoshi; Yang, Chen; Tan, Aaron (2015) Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res 290:17-31
Ilango, Anton; Kesner, Andrew J; Keller, Kristine L et al. (2014) Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci 34:817-22
Ilango, Anton; Kesner, Andrew J; Broker, Carl J et al. (2014) Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcement-schedule analyses. Front Behav Neurosci 8:155
Keller, Kristine L; Vollrath-Smith, Fiori R; Jafari, Mehrnoosh et al. (2014) Synergistic interaction between caloric restriction and amphetamine in food-unrelated approach behavior of rats. Psychopharmacology (Berl) 231:825-40
Ikemoto, Satoshi; Bonci, Antonello (2014) Neurocircuitry of drug reward. Neuropharmacology 76 Pt B:329-41
Jhou, Thomas C; Good, Cameron H; Rowley, Courtney S et al. (2013) Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways. J Neurosci 33:7501-12