In dopaminergic neurons, a-synuclein (aS) partitions between a disordered cytosolic state and a lipid-bound state. Binding of aS to membrane phospholipids is implicated in its functional role of synaptic regulation, but also impacts fibril formation associated with Parkinson's disease. A 2011 study by Selkoe et al reported that if aS is expressed in mammalian cells and purified without a heat denaturation step, it adopts a stable tetrameric helical structure. We developed this expression system but were unable to duplicate their findings. However, we found by high-resolution NMR spectroscopy and circular dichroism (CD) measurements, that the N-terminal acetylation which occurs in mammalian cells impacts the protein's structure and dynamics in free solution and also affects the protein's membrane binding properties. While no tetrameric form of acetylated aS could be isolated, N-terminal acetylation resulted in chemical shift perturbations of the first 12 residues of the protein which progressively decreased with distance from the N-terminus. The directions of the chemical shift changes and small changes in backbone 3JHH couplings are consistent with an increase in alpha-helicity of the first six residues of aS, although a high degree of dynamic conformational disorder remains and the helical structure is sampled less than 20%. Chemical shift and 3JHH data for the intact protein are virtually indistinguishable from those recorded for the corresponding N-terminally acetylated and non-acetylated 15-residue synthetic peptides. An increase in alpha-helicity at the N-terminus of aS is supported by CD data on the acetylated peptide, and by weak medium-range NOE contacts indicative of alpha-helical character. The remainder of the protein has chemical shift values that are very close to random coil values and indistinguishable between the two forms of the protein. No significant difference in the fibrillation kinetics were observed between acetylated and non-acetylated aS. However, the lipid binding properties of aS are strongly impacted by acetylation, and exhibit distinct behavior for the first 12 residues, indicative of an initiation role for the N-terminal residues in an initiation-elongation process of binding to the membrane. Using a diverse set of NMR parameters, including backbone chemical shifts, homo- and heteronuclear J couplings, as well as short range NOEs, we have developed a detailed description of the backbone torsion angle distribution at the residue-specific level for this intrinsically disordered protein. Although the deviations from classical coil libraries are small, they are statistically quite significant and provide a first detailed view of the backbone torsion angles sampled by an intrinsically disordered protein. These backbone torsion angle distributions cross validate considerably better than ensemble model descriptions of the full chain, an approach developed in several other laboratories. Prior work by others has established that oxidative reactions with poly-unsaturated lipids as well as with dopamine degradation product can result in covalently linked oligomeric species that can halt fibril formation of alpha synuclein and result in highly toxic oligomeric species. Using analytical NMR techniques combined with mass spectrometery, we have unraveled the chemical structure of an adduct that forms between the proteins Lys sidechains and DOPAL, the product of mono amine oxidase in the first cellular step of the dopamine breakdown cascade. In the presence of Cu2+ or Fe3+, the reaction product is highly reactive to cross linking, providing a plausible path to the formation of toxic, covalently linked oligomeric forms of alpha synuclein.

Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2015
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
Zip Code
Alderson, T Reid; Lee, Jung Ho; Charlier, Cyril et al. (2018) Propensity for cis-Proline Formation in Unfolded Proteins. Chembiochem 19:37-42
Shen, Yang; Roche, Julien; Grishaev, Alexander et al. (2018) Prediction of nearest neighbor effects on backbone torsion angles and NMR scalar coupling constants in disordered proteins. Protein Sci 27:146-158
Werner-Allen, Jonathan W; Monti, Sarah; DuMond, Jenna F et al. (2018) Isoindole Linkages Provide a Pathway for DOPAL-Mediated Cross-Linking of ?-Synuclein. Biochemistry 57:1462-1474
Stolzenberg, Ethan; Berry, Deborah; Yang, De et al. (2017) A Role for Neuronal Alpha-Synuclein in Gastrointestinal Immunity. J Innate Immun 9:456-463
Perni, Michele; Galvagnion, CĂ©line; Maltsev, Alexander et al. (2017) A natural product inhibits the initiation of ?-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci U S A 114:E1009-E1017
Werner-Allen, Jon W; Levine, Rodney L; Bax, Ad (2017) Superoxide is the critical driver of DOPAL autoxidation, lysyl adduct formation, and crosslinking of ?-synuclein. Biochem Biophys Res Commun 487:281-286
Roche, Julien; Ying, Jinfa; Bax, Ad (2016) Accurate measurement of (3)J(HNH?) couplings in small or disordered proteins from WATERGATE-optimized TROSY spectra. J Biomol NMR 64:1-7
Alderson, T Reid; Bax, Ad (2016) Parkinson's disease: Disorder in the court. Nature 530:38-9
Werner-Allen, Jon W; DuMond, Jenna F; Levine, Rodney L et al. (2016) Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of ?-Synuclein. Angew Chem Int Ed Engl 55:7374-8
Lee, Jung Ho; Ying, Jinfa; Bax, Ad (2016) Quantitative evaluation of positive ? angle propensity in flexible regions of proteins from three-bond J couplings. Phys Chem Chem Phys 18:5759-70

Showing the most recent 10 out of 22 publications