The task of comparing the mechanistic details of GR- vs. PR-regulated gene transcription gained additional criteria with our development of a theoretical model of steroid receptor action (Ong et al., 2010, Proc Natl Acad Sci U S A, 107, 7107-7112). Three novel features of this model, and its associated graphical analysis, permit an unprecedented level of mechanistic information regarding steroid receptor-regulated gene transactivation. First, it is now possible to determine the kinetically-defined type of action being displayed by the factor (competitive decelerator, uncompetitive decelerator, acelerator, etc.). Second, it is usually possible to define where the factor acts relative to a reference point called the concentration limiting step (CLS), which is the steady state analog of the rate limiting step of enzyme kinetics. Third, the model and its graphical analysis have recently been extended to the analysis of two competing factors in the same assay (Dougherty et al., 2012, PLoS ONE, 7, e30225). As opposed to making the situation more obscure, this competition assay actually yields greater mechanistic information. Not only can such competition assays determine how and where each factor acts, relative to the CLS, but the site of action of the two factors relative to each other is usually revealed. Thus, one can now assemble an ordered sequence of reactions based on the biological function of cofactors, much as in epistasis analysis, even when the biochemical properties of the cofactors are not known. Initial experiments with a several cofactors have not exposed any major differences between GR and PR action. Recent experiments have uncovered numerous factors that alter the Amax and EC50 of GR-regulated gene induction. Future studies will determine whether any of these new factors preferentially affect GR- vs. PR-mediated responses. These studies greatly contribute to our long-term goal of defining the action of GRs vs. PRs at a molecular level and of understanding their role in human physiology.

Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
Zip Code
Zhu, Rong; Lu, Xinping; Pradhan, Madhumita et al. (2014) A kinase-independent activity of Cdk9 modulates glucocorticoid receptor-mediated gene induction. Biochemistry 53:1753-67
Simons Jr, S Stoney; Edwards, Dean P; Kumar, Raj (2014) Minireview: dynamic structures of nuclear hormone receptors: new promises and challenges. Mol Endocrinol 28:173-82
Luo, Min; Lu, Xinping; Zhu, Rong et al. (2013) A conserved protein motif is required for full modulatory activity of negative elongation factor subunits NELF-A and NELF-B in modifying glucocorticoid receptor-regulated gene induction properties. J Biol Chem 288:34055-72
Simons Jr, S Stoney; Kumar, Raj (2013) Variable steroid receptor responses: Intrinsically disordered AF1 is the key. Mol Cell Endocrinol 376:81-4
Blackford Jr, John A; Guo, Chunhua; Zhu, Rong et al. (2012) Identification of location and kinetically defined mechanism of cofactors and reporter genes in the cascade of steroid-regulated transactivation. J Biol Chem 287:40982-95
Dougherty, Edward J; Guo, Chunhua; Simons Jr, S Stoney et al. (2012) Deducing the temporal order of cofactor function in ligand-regulated gene transcription: theory and experimental verification. PLoS One 7:e30225
Simons Jr, S Stoney; Chow, Carson C (2012) The road less traveled: new views of steroid receptor action from the path of dose-response curves. Mol Cell Endocrinol 348:373-82
Khan, Shagufta H; Awasthi, Smita; Guo, Chunhua et al. (2012) Binding of the N-terminal region of coactivator TIF2 to the intrinsically disordered AF1 domain of the glucocorticoid receptor is accompanied by conformational reorganizations. J Biol Chem 287:44546-60
Chow, Carson C; Ong, Karen M; Dougherty, Edward J et al. (2011) Inferring mechanisms from dose-response curves. Methods Enzymol 487:465-83
Lee, Geun-Shik; Simons Jr, S Stoney (2011) Ligand binding domain mutations of the glucocorticoid receptor selectively modify the effects with, but not binding of, cofactors. Biochemistry 50:356-66

Showing the most recent 10 out of 12 publications