1) Purpose: Terminal differentiation of erythropoietic progenitors requires the rapid accumulation of large amounts of iron, which is transported to the mitochondria, where it is incorporated into heme. Ferritin is the sole site of iron storage present in the cytosol. Yet the role of iron accumulation into ferritin in the context of red cell development had not been clearly defined. Early studies indicated that at the onset of terminal differentiation, iron initially accumulates in ferritin and precedes heme synthesis. Whether this accumulation is physiologically important for red cell development was unclear until recent studies defined an obligatory pathway of iron flux through ferritin. Recent findings: The iron chaperone functions of poly rC-binding protein 1 (PCBP1) and the autophagic cargo receptor for ferritin, nuclear co-activator 4 (NCOA4) are required for the flux of iron through ferritin in developing red cells. In the absence of these functions, iron delivery to mitochondria for heme synthesis is impaired. Summary: The regulated trafficking of iron through ferritin is important for maintaining a consistent flow of iron to mitochondria without releasing potentially damaging redox-active species in the cell. Other components of the iron trafficking machinery are likely to be important in red cell development. 2) Developing red blood cells exhibit multiple, redundant systems for regulating and coordinating the uptake of iron, the synthesis of heme, and the formation of hemoglobin during terminal differentiation. We recently described the roles of poly rC-binding protein (PCBP1) and nuclear coactivator 4 (NCOA4) in mediating the flux of iron through ferritin in developing erythroid cells, with PCBP1, an iron chaperone, delivering iron to ferritin and NCOA4, an autophagic cargo receptor, directing ferritin to the lysosome for degradation and iron release. Ferritin iron flux is critical, as mice lacking these factors develop microcytic anemia. Here we report that these processes are regulated by cellular iron levels in a murine model of ex vivo terminal differentiation. PCBP1 delivers iron to ferritin via a direct protein-protein interaction. This interaction is developmentally regulated, enhanced by iron deprivation, and inhibited by iron excess, both in developing cells and in vitro. NCOA4 activity also exhibited developmental regulation and regulation by cellular iron levels. Excess iron uptake during differentiation triggered lysosomal degradation of NCOA4, which was dependent on the E3 ubiquitin ligase HERC2. Thus, developing red blood cells express a series of proteins that both mediate and regulate the flux of iron to the mitochondria.
Showing the most recent 10 out of 17 publications