Diacetyl, a reactive diketone used in artificial butter flavoring has been associated with obliterative bronchiolitis (OB) in employees at microwave popcorn packaging plants;however, the mechanisms of toxicity are unknown. We recently demonstrated that diacetyl, the major volatile component of artificial butter flavoring, caused OB-like lesions in rats after inhalation exposure. Because of concerns about diacetyl toxicity, it is being replaced in some consumer products by 2,3-pentanedione (PD), and possibly 2,3-hexanedione (HD), both structurally-related and untested chemicals. Because the toxicity of inhaled PD and HD are unknown, studies were conducted to characterize the toxicity after inhalation exposure to a range of concentrations in rodents. Male and female Wistar-Han rats were exposed to 0, 50, 100, or 200 ppm PD 6h/d, 5d/wk for up to 2 wk. HD caused only minor epithelial changes at the highest concentration;however, PD was found to cause OB-like lesions similar to those caused by diacetyl. The epithelium lining the respiratory tract was the site of toxicity for all three chemicals. Diacetyl and PD both caused fibrotic airway lesions in rats with pathological features of OB. The pathological and biological changes observed in rats indicate that PD is not an acceptable replacement for diacetyl. We sought to evaluate changes in gene expression in the distal bronchi of rats with PD-induced OB. Male Wistar Han rats were exposed to 200 ppm PD or air (controls) 6 h/d, 5 d/week for 2-wks. Bronchial tissues were laser microdissected from serial sections of frozen lung. In exposed lungs, both fibrotic and non-fibrotic airways were collected. Following RNA extraction and microarray analysis, differential gene expression was evaluated. In non-fibrotic bronchi of exposed rats, 1548 genes were significantly altered relative to air-exposed controls with notable down-regulation of many inflammatory cytokines and chemokines. In contrast, in PD-exposed fibrotic bronchi, 2504 genes were significantly altered with a majority of genes being up-regulated in affected pathways. Tgf-beta2 and downstream genes implicated in fibrosis were significantly up-regulated in fibrotic lesions. Genes for collagens and extracellular matrix proteins were highly up-regulated. In addition, expression of genes for peptidases and for peptidase inhibitors were significantly altered suggesting tissue remodeling that may contribute to fibrosis. Additional control animals were evaluated by microarray to strengthen the statistical significance of gene changes in PD-exposed rats. Our data provide new insights into the molecular mechanisms of OB, and illustrate that PD-induced OB shares pathologic features with other fibrotic lung diseases. This new information is of potential significance with regards to future therapeutic targets for treatment.

Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2014
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
Zip Code
Morgan, Daniel L; Jokinen, Micheal P; Johnson, Crystal L et al. (2016) Chemical Reactivity and Respiratory Toxicity of the ?-Diketone Flavoring Agents: 2,3-Butanedione, 2,3-Pentanedione, and 2,3-Hexanedione. Toxicol Pathol 44:763-83
Morgan, Daniel L; Merrick, B Alex; Gerrish, Kevin E et al. (2015) Gene expression in obliterative bronchiolitis-like lesions in 2,3-pentanedione-exposed rats. PLoS One 10:e0118459
Kelly, Francine L; Sun, Jesse; Fischer, Bernard M et al. (2014) Diacetyl induces amphiregulin shedding in pulmonary epithelial cells and in experimental bronchiolitis obliterans. Am J Respir Cell Mol Biol 51:568-74
Gwinn, William M; Qu, Wei; Shines, Cassandra J et al. (2013) Macrophage Solubilization and Cytotoxicity of Indium-Containing Particles In Vitro. Toxicol Sci :
Yildirim, Eda; Carey, Michelle A; Card, Jeffrey W et al. (2012) Severely blunted allergen-induced pulmonary Th2 cell response and lung hyperresponsiveness in type 1 transient receptor potential channel-deficient mice. Am J Physiol Lung Cell Mol Physiol 303:L539-49
Morgan, Daniel L; Jokinen, Micheal P; Price, Herman C et al. (2012) Bronchial and bronchiolar fibrosis in rats exposed to 2,3-pentanedione vapors: implications for bronchiolitis obliterans in humans. Toxicol Pathol 40:448-65
Dackor, Ryan T; Cheng, Jennifer; Voltz, James W et al. (2011) Prostaglandin Eýýý protects murine lungs from bleomycin-induced pulmonary fibrosis and lung dysfunction. Am J Physiol Lung Cell Mol Physiol 301:L645-55
Morgan, Daniel L; Nyska, Abraham; Harbo, Sam Jens et al. (2011) Multisite carcinogenicity and respiratory toxicity of inhaled 1-bromopropane in rats and mice. Toxicol Pathol 39:938-48
Palmer, Scott M; Flake, Gordon P; Kelly, Fran L et al. (2011) Severe airway epithelial injury, aberrant repair and bronchiolitis obliterans develops after diacetyl instillation in rats. PLoS One 6:e17644
Mathews, James M; Watson, Scott L; Snyder, Rodney W et al. (2010) Reaction of the butter flavorant diacetyl (2,3-butanedione) with N-?-acetylarginine: a model for epitope formation with pulmonary proteins in the etiology of obliterative bronchiolitis. J Agric Food Chem 58:12761-8