One of our objectives in this study was to investigate whether the aberrant upregulation of cytokine secretion in patients with persistent ocular inflammatory disease derives in part from defects in proteins that mediate negative feedback regulation of activities of proinflammatory cytokine. We found that PBMC of patients with scleritis could not induce the expression of the negative feedback regulatory protein SOCS1. Because ethical considerations and NIH IRB guidelines precluded obtaining retinal tissue biopsy to determine whether SOCS expression is also defective in ocular tissues of scleritis patients, we generated transgenic mice and rats with over-expression of SOCS1 in the retina and used these animals to further investigate the role of SOCS1 in the retina and intraocular inflammatory diseases. Although results from several studies suggest that induction of SOCS1, SOCS3 and CIS by inflammatory cells mitigates immune responses by regulating the intensity and duration of cytokine signals, until now it has not been clear whether retinal cells also produce SOCS1 and what physiological role they might have during ocular inflammation. By targeting the over-expression of SOCS1 to the retina of rats and mice and examining the in vivo function of SOCS1 in the well-characterized EAU model, we show that SOCS1 protects mice and rats from developing severe uveitis. Our data suggests that proinflammatory cytokines produced during EAU induces retinal cells to repress the production of chemotactic cytokines and this results in substantial decrease in the numbers of pathogenic T cells recruited into the retina during uveitis. Defective expression of SOCS1 in patients with scleritis, taken together with our data showing that SOCS1 mediated protection of neuroretinal cells from apoptosis, suggests that SOCS1 has neuroprotective function in the retina and imply that administration of SOCS1 mimetic peptides maybe useful in treating uveitis or scleritis.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAEY000280-22
Application #
8737612
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
22
Fiscal Year
2013
Total Cost
$472,784
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
Zip Code
He, Chang; Yu, Cheng-Rong; Mattapallil, Mary J et al. (2016) SOCS1 Mimetic Peptide Suppresses Chronic Intraocular Inflammatory Disease (Uveitis). Mediators Inflamm 2016:2939370
Wang, Xiaoqian; Wei, Yinxiang; Xiao, He et al. (2016) A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in Lupus-like mice. Eur J Immunol 46:1343-50
Sun, Lin; St Leger, Anthony J; Yu, Cheng-Rong et al. (2016) Interferon Regulator Factor 8 (IRF8) Limits Ocular Pathology during HSV-1 Infection by Restraining the Activation and Expansion of CD8+ T Cells. PLoS One 11:e0155420
Kim, Sung-Hye; Burton, Jenna; Yu, Cheng-Rong et al. (2015) Dual Function of the IRF8 Transcription Factor in Autoimmune Uveitis: Loss of IRF8 in T Cells Exacerbates Uveitis, Whereas Irf8 Deletion in the Retina Confers Protection. J Immunol 195:1480-8
Egwuagu, C E; Sun, L; Kim, S-H et al. (2015) Ocular Inflammatory Diseases: Molecular Pathogenesis and Immunotherapy. Curr Mol Med 15:517-28
He, Chang; Yu, Cheng-Rong; Sun, Lin et al. (2015) Topical administration of a suppressor of cytokine signaling-1 (SOCS1) mimetic peptide inhibits ocular inflammation and mitigates ocular pathology during mouse uveitis. J Autoimmun 62:31-8
Yu, Cheng-Rong; Hayashi, Kozaburo; Lee, Yun Sang et al. (2015) Suppressor of cytokine signaling 1 (SOCS1) mitigates anterior uveitis and confers protection against ocular HSV-1 infection. Inflammation 38:555-65
Egwuagu, Charles E (2014) Chronic intraocular inflammation and development of retinal degenerative disease. Adv Exp Med Biol 801:417-25
Yu, Cheng-Rong; Kim, Sung-Hye; Mahdi, Rashid M et al. (2013) SOCS3 deletion in T lymphocytes suppresses development of chronic ocular inflammation via upregulation of CTLA-4 and expansion of regulatory T cells. J Immunol 191:5036-43
Yu, Cheng-Rong; Mahdi, Rashid R; Oh, Hyun-Mee et al. (2011) Suppressor of cytokine signaling-1 (SOCS1) inhibits lymphocyte recruitment into the retina and protects SOCS1 transgenic rats and mice from ocular inflammation. Invest Ophthalmol Vis Sci 52:6978-86

Showing the most recent 10 out of 12 publications