During past year, we investigated of using ERG recording as a tool to understand the changes in visual signal pathway and processing mechanisms in the cone-only retina of Nrl-ko mouse. Nrl is a transcription factor that controls the fate of photoreceptor progenitor cells. Lack of Nrl expression in Nrl-ko mouse retina leads to the conversion of rod photoreceptors to cone photoreceptors. Nrl-ko mouse has been proposed to serve as a model for human macular dieseases. Using ERG recording methods, we found that Compared with wild-type animal, Nrl-ko mice exhibited larger b-wave amplitudes and a higher sensitivity for UV flash ERG. On the other hand, Nrl-ko mice had smaller b-wave amplitudes and a lower sensitivity for ERG responses elicited by green light. ERG responses to green flashes had a faster kinetics with shortening in both latency and peak implicit time than those evoked by UV flashes. UV flicker ERG responses had a frequency-response turning curve that lied in between WT scotopic and photopic response curves, whereas green flicker responses followed closely to WT photopic response curve. Based on these results, we hypothesized that there are two subtypes of cone photoreceptors are present in the Nrl-ko animals. Majority of them expresses high levels of S-opsin and also communicates with rod-bipolar cells in the retina. This pathway mediates large, highly sensitive, and slow UV flash ERG responses. M-opsin is preferentially expressed in a small subset of cone photoreceptors, and these photoreceptors likely only connect with cone-bipolar cells. This hypothesis is supported by immunocytochemical studies which revealed selective connection between PKC-positive rod-bipolar cells and photoreceptors expressing high-level of S-opsin. Our ERG results are also consistent with the observation that Nrl-ko mice exhibited a slight lower spatial sensitivity than wild-type controls. In conclusion, our study indicated that non-invasive ERG recordings could provide valuable sights into the signal processing mechanisms in the mouse retina.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAEY000530-01
Application #
8737688
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2013
Total Cost
$47,278
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Li, Yichao; Zhang, Yikui; Chen, Sonia et al. (2018) Light-Dependent OCT Structure Changes in Photoreceptor Degenerative rd 10 Mouse Retina. Invest Ophthalmol Vis Sci 59:1084-1094
Zhang, Yikui; Zhao, Lian; Wang, Xu et al. (2018) Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Sci Adv 4:eaap8492
Veleri, Shobi; Nellissery, Jacob; Mishra, Bibhudatta et al. (2017) REEP6 mediates trafficking of a subset of Clathrin-coated vesicles and is critical for rod photoreceptor function and survival. Hum Mol Genet 26:2218-2230
Fan, Jianguo; Jia, Li; Li, Yan et al. (2017) Maturation arrest in early postnatal sensory receptors by deletion of the miR-183/96/182 cluster in mouse. Proc Natl Acad Sci U S A 114:E4271-E4280
Wang, Xu; Zhao, Lian; Zhang, Yikui et al. (2017) Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration. J Neurosci 37:3294-3310
Hinshaw, Samuel J H; Ogbeifun, Osato; Wandu, Wambui S et al. (2016) Digoxin Inhibits Induction of Experimental Autoimmune Uveitis in Mice, but Causes Severe Retinal Degeneration. Invest Ophthalmol Vis Sci 57:1441-7
Sun, Xun; Park, James H; Gumerson, Jessica et al. (2016) Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations. Proc Natl Acad Sci U S A 113:E2925-34
Li, Yichao; Fariss, Robert N; Qian, Jennifer W et al. (2016) Light-Induced Thickening of Photoreceptor Outer Segment Layer Detected by Ultra-High Resolution OCT Imaging. Invest Ophthalmol Vis Sci 57:OCT105-11
Wang, Jing; Mojumder, Deb Kumar; Yan, Jun et al. (2015) In vivo electroretinographic studies of the role of GABAC receptors in retinal signal processing. Exp Eye Res 139:48-63
Li, Yan; Yu, Shirley; Duncan, Todd et al. (2015) Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage. Hum Mol Genet 24:4417-28

Showing the most recent 10 out of 17 publications