The molecular basis of embryogenesis in Xenopus laevis is the subject of this project. We have used DNA microarray technology and other methods for gene discovery in the early embryo, with the aim to obtain information on gene expression patterns and gene function in development, and through this to lead to improved understanding of the molecular basis of normal embryogenesis and abnormalities that can arise by loss of function or malfunction of various genes. Several genes with a role in vertebrate embryogenesis have been studied in the recent past. One of the projects conducted in the laboratory using DNA microarray technology concerns the formation of the notochord in Xenopus;the notochord is the defining structure of chordates, the phylum that includes both frogs and humans. The notochord has been known to contain vacuoles and to be surrounded by a sheath;both of these structures are required to give it the mechanical strength that is an important characteristic of this tissue. Both vacuole and sheath formation involves the secretion of proteins, and previous studies in several laboratories have shown that secreted proteins from different classes are required for notochord formation. In our DNA microarray studies we found that activation of the genes encoding secretory pathway components is a hallmark of notochord differentiation. The great majority of genes that are differentially expressed in the notochord as compared to the rest of the embryo belong to this functional class. We have shown that the coordinate activation of secretory pathway genes in the developing notochord involves the function of two transcription factors named XBP1 and Creb3L2. These factors themselves are preferentially expressed in the early notochord, and their activation in precursor cells is an important step in the specification of the notochord. These studies contribute to an understanding of the molecular basis of differentiation of one of the earliest-forming tissues characteristic of the vertebrate embryo. Our longstanding interest in neural crest development has been continued in the study of the novel factor Kctd15 that restricts neural crest induction in both the zebrafish and Xenopus embryo. Kctd15 is a BTB-domain containing protein that is first expressed in the embryo at the neural plate border, and subsequently in pharyngeal arches and other regions. Overexpression of Kctd15 strongly inhibits neural crest specification in whole embryos and in animal explants, as studied in so-called animal caps from Xenopus embryos. All transcription factor encoding genes that are characteristically induced during neural crest formation were inhibited by overexpression of Kctd15. We propose that Kctd15 is involved in delineating the separate placode and neural crest domains by preventing the neural crest from expanding beyond its natural limits. This laboratory has a long-standing interest in the function of the Lim-homeodomain transcription factor Lhx1 in Xenopus, also called Xlim1. This factor has an important role in the gastrula, which we and others have studied in detail. At later stages, Lhx1 is expressed in several tissues including the developing kidney, and it is known that the gene has a role in pronephros formation. A recent collaborative study explored this role in further detail. This work made use of antisense oligonucleotide technology to disrupt Lhx1 function, and further employed a constitutively active construct to explore gain-of-function phenotypes for this gene. These studies showed that Lhx1 function is critical for the earliest steps of specification of the kidney field. To approach the mechanism of Lhx1 function in kidney development we cultured Xenopus embryo explants under conditions known to induce formation of the pronephros, while also blocking Lhx1 function in some of the samples. Comparison of explants under different conditions by DNA microarray technology yielded a list of genes that require Lhx1 function for expression, some of which were known to be expressed in the early kidney. A subset of the Lhx1 dependent genes identified in this manner are candidates for further study in the context of kidney specification.

Project Start
Project End
Budget Start
Budget End
Support Year
29
Fiscal Year
2011
Total Cost
$504,306
Indirect Cost
City
State
Country
Zip Code
Wong, Thomas C B; Rebbert, Martha; Wang, Chengdong et al. (2016) Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest. Int J Dev Biol 60:159-66
Komiya, Yuko; Mandrekar, Noopur; Sato, Akira et al. (2014) Custos controls ?-catenin to regulate head development during vertebrate embryogenesis. Proc Natl Acad Sci U S A 111:13099-104
Kim, Mi Ha; Rebbert, Martha L; Ro, Hyunju et al. (2014) Cell adhesion in zebrafish embryos is modulated by March 8. PLoS One 9:e94873
Zarelli, Valeria E; Dawid, Igor B (2013) Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2. Proc Natl Acad Sci U S A 110:2870-5
Zhao, Hui; Han, Dandan; Dawid, Igor B et al. (2012) Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos. Proc Natl Acad Sci U S A 109:8594-9
Lei, Yong; Guo, Xiaogang; Liu, Yun et al. (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109:17484-9
Cirio, M Cecilia; Hui, Zhao; Haldin, Caroline E et al. (2011) Lhx1 is required for specification of the renal progenitor cell field. PLoS One 6:e18858
Dutta, Sunit; Dawid, Igor B (2010) Kctd15 inhibits neural crest formation by attenuating Wnt/beta-catenin signaling output. Development 137:3013-8
Znosko, Wade A; Yu, Shibin; Thomas, Kirk et al. (2010) Overlapping functions of Pea3 ETS transcription factors in FGF signaling during zebrafish development. Dev Biol 342:11-25
Kam, Richard K T; Chen, Yonglong; Chan, Sun-On et al. (2010) Developmental expression of Xenopus short-chain dehydrogenase/reductase 3. Int J Dev Biol 54:1355-60

Showing the most recent 10 out of 19 publications