Analysis of global gene expression: Studies are in progress which have characterized gene expression in the pineal gland. The first stage has involved analysis of the rat pineal gland: The rodent pineal transcriptome was investigated using microarray gene expression. Comparison of midday and midnight expression profiles revealed that a global >2-fold change in the expression of 1000 genes, 2/3 of which increase at night. Among these, 400 increase >4- fold in expression;studies in organ culture reveal that in nearly all cases, the expression of the highly upregulated genes is induced by treatment with NE or cyclic nucleotide analogs. These findings are consistent with the conclusion that NE-cyclic nucleotide signaling is the primary mechanism responsible for the nocturnal increase in gene expression. However, it is also clear that other mechanisms are involved, because a small number of highly rhythmic genes are not induced or are weakly induced by NE treatment. Comparison of the level of gene expression in the pineal gland to the median expression in other tissues indicates that a set of >300 genes are expressed >8- fold higher in the pineal gland. A significant subset of the most highly expressed genes encode proteins involved in melatonin synthesis and the control of this process, including signalling via adrenergic receptors and second messengers including cyclic nucleotides, Ca++ and phospholipids. Clusters of highly expressed genes are associated with the cellular biology of thyroid hormone, retinoid acid, glutamate biology;and, with metal ion homeostasis, membrane trafficking, and the immune response. Other highly and/or rhythmically expressed genes also encode transcription factors, ion channels, transporters, receptors, regulatory molecules and secreted products that have not previously appeared in the pineal literature. Comparison of the pineal gene expression profile to that of several other tissues adds to the evidence that the pineal gland is most similar to the retina by expanding the number of genes that are highly expressed exclusively in these two tissues. This study indicates that control of pineal biology is significantly more complex than previously thought, that the number of highly expressed genes in the pineal gland and retina is higher than previously thought, and also provides molecular evidence to suspect that the gland might function outside of the highly conserved role it plays in melatonin production. The work on the rodent pineal gland is being followed up with similar work on the pineal gland of the monkey and human, so as to determine the similarity of the patterns of gene expression in these three tissues. The results of the analysis of the rodent pineal gland has triggered a number of studies, some of which have been published, which have focused on genes that have been highlighted by the microarray studies. An example is detailed in HD000095-37. This work is being extended using RNA Seq technology, with focus on miRNA and long noncoding RNAs in addition to annotated genes.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong et al. (2015) The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus. Brain Struct Funct 220:1497-509
Yamazaki, Fumiyoshi; Kim, Hyun Hee; Lau, Pierre et al. (2014) pY RNA1-s2: a highly retina-enriched small RNA that selectively binds to Matrin 3 (Matr3). PLoS One 9:e88217
Falcón, Jack; Coon, Steven L; Besseau, Laurence et al. (2014) Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya. Proc Natl Acad Sci U S A 111:314-9
Kucka, Marek; Bjelobaba, Ivana; Clokie, Samuel J H et al. (2013) Female-specific induction of rat pituitary dentin matrix protein-1 by GnRH. Mol Endocrinol 27:1840-55
Matsuo, Masahiro; Coon, Steven L; Klein, David C (2013) RGS2 is a feedback inhibitor of melatonin production in the pineal gland. FEBS Lett 587:1392-8
Rath, Martin F; Rohde, Kristian; Klein, David C et al. (2013) Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance. Neurochem Res 38:1100-12
Ochocinska, Margaret J; Muñoz, Estela M; Veleri, Shobi et al. (2012) NeuroD1 is required for survival of photoreceptors but not pinealocytes: results from targeted gene deletion studies. J Neurochem 123:44-59
Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F et al. (2012) Circadian changes in long noncoding RNAs in the pineal gland. Proc Natl Acad Sci U S A 109:13319-24
Clokie, Samuel J H; Lau, Pierre; Kim, Hyun Hee et al. (2012) MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase. J Biol Chem 287:25312-24
Bustos, Diego M; Bailey, Michael J; Sugden, David et al. (2011) Global daily dynamics of the pineal transcriptome. Cell Tissue Res 344:1-11

Showing the most recent 10 out of 27 publications