The long-term goal of this project is to define molecular mechanisms that control synapse assembly and growth. Drosophila NMJ is a glutamatergic synapse, similar in structure and physiology to mammalian central excitatory synapses. In flies each NMJ is unique and identifiable, synapses are large and accessible for electrophysiological and optical analysis, making the Drosophila NMJ a powerful genetic system to study synapse development. The Drosophila NMJ can thus be used to analyze and model defects in the structural and physiological plasticity of glutamatergic synapses, which are associated with a variety of human pathologies from learning, memory deficits to autism. The similarity in gross architecture, function, and molecular machinery supports the notion that studying the assembly and development of fly glutamatergic synapses will shed light on their vertebrate counterparts. In flies the subunits that form the glutamate-gated ion channels (iGluRs) are known and relatively well studied. In flies as in humans, synapse strength and plasticity is determined by the interplay between different iGluRs subtypes. At the fly NMJ the type-A and type-B iGluRs consist of four different subunits: either GluRIIA or -IIB, plus -IIC, -IID and -IIE. Various mechanisms regulating the extent of type-A and type-B receptors accumulation at synaptic sites have been described but the molecular mechanisms for the initial localization and clustering of receptors at synaptic sites remained a mystery. We have recently discovered an obligatory auxiliary protein, Neto (Neuropillin and Tolloid-like), absolutely required for the iGluRs clustering and NMJ functionality. Neto belongs to a family of highly conserved proteins sharing an ancestral role in formation and modulation of glutamatergic synapses. To date, Neto is the only auxiliary protein known in Drosophila; no other iGluRs auxiliary subunits have been described. Our investigations uncovered essential roles for Neto during synapse development and strongly support the notion that trafficking of both iGluR subtypes on the muscle membrane, their synaptic recruitment and stabilization, and their function are tightly regulated by Neto. Our recent results further suggest that the fly Neto isoforms (α and β) directly engage iGluRs as well as other intracellular and extracellular proteins to selectively regulate the distribution of iGluRs subtypes, the recruitment of postsynaptic proteins, and the organization of postsynaptic structures. Since iGluRs gating properties control the distribution and trafficking of these receptors in vivo, Neto could influence the synaptic recruitment of iGluRs by simultaneously controlling multiple steps in receptor trafficking and clustering and/or receptor function. Until recently, our investigations were limited by the inability to reconstitute functional Drosophila NMJ receptors in heterologous systems and identify the structural elements and the auxiliary subunits important for receptor assembly, surface delivery, synaptic recruitment and function. We have recently solved this problem by accomplishing the first functional reconstitution of NMJ iGluRs in Xenopus oocytes. The ability to examine the functional characteristics of iGluRs in heterologous systems opens up tremendous opportunities to study the modulation of iGluRs function and parse out a role for Neto and/or other auxiliary proteins in the receptor function vs. receptor assembly, surface expression, synaptic trafficking and/or stabilization.
Showing the most recent 10 out of 12 publications