Development of MEG data recording and signal processing methods has been very successful. Studies of working memory tasks and auditory processing tasks have shown the ability to localize brain activation and to address issues of phasic versus tonic activity. We are investigating phenotype measures that will be applicable in many related studies and specifically the sibling project. MEG recording during cognitive activation has shown the ability to localize in very comparable fashion to fMRI. Specifically beta desynchronization at the cortical level has been found to agree with BOLD activation results. However, the MEG/EEG allows for temporal information not possible with other imaging techniques. Phasic relationships across brain areas have been demonstrated using advanced signal processing techniques. Our results to date show that measures of brain structure and function represent powerful tools to find susceptibility genes. Further studies have demonstrated the ability to localize signals also in deeper structures such as the amygdala and to investigate the relation of visual awareness to gamma band signals. Diffrerences in the degree of activation especially in frontal regions as indexed by beta desynchronization during a working memory task have been found between patients with schizophrenia compared to well siblings and normal control volunteers. Further investigation of this activation has revealed an interaction with genotype for the well studied COMT marker. Differences in network patterns and dynamics are key to understanding underlying pathology in clinical groups. Bassett et al have shown that functional network differnce in patient groups can be demonstrated and related to behavioral outcomes on cognitive activities. Rutter et al have shown that even at rest patients with schizophrenia have gamma power reduction compared to normal subjects. It remains to be seen whether these finding relate to state or trait differences and if there are genetic associations.

Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2009
Total Cost
$10,392
Indirect Cost
Name
U.S. National Institute of Mental Health
Department
Type
DUNS #
City
State
Country
Zip Code
Altamura, Mario; ElvevÄg, Brita; Goldberg, Terry E et al. (2016) The impact of Val108/158Met polymorphism of catechol-O-methyltransferase on brain oscillations during working memory. Neurosci Lett 610:86-91
Jabbi, Mbemba; Kohn, Philip D; Nash, Tiffany et al. (2015) Convergent BOLD and Beta-Band Activity in Superior Temporal Sulcus and Frontolimbic Circuitry Underpins Human Emotion Cognition. Cereb Cortex 25:1878-88
Altamura, Mario; Carver, Frederick W; Elvevag, Brita et al. (2014) Dynamic cortical involvement in implicit anticipation during statistical learning. Neurosci Lett 558:73-7
Shriki, Oren; Alstott, Jeff; Carver, Frederick et al. (2013) Neuronal avalanches in the resting MEG of the human brain. J Neurosci 33:7079-90
Jabbi, M; Nash, T; Kohn, P et al. (2013) Midbrain presynaptic dopamine tone predicts sustained and transient neural response to emotional salience in humans: fMRI, MEG and FDOPA PET. Mol Psychiatry 18:4-6
Furl, Nicholas; Coppola, Richard; Averbeck, Bruno B et al. (2013) Cross-Frequency Power Coupling Between Hierarchically Organized Face-Selective Areas. Cereb Cortex :
Rutter, Lindsay; Nadar, Sreenivasan R; Holroyd, Tom et al. (2013) Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks. Front Comput Neurosci 7:93
Siebenhuhner, Felix; Weiss, Shennan A; Coppola, Richard et al. (2013) Intra- and inter-frequency brain network structure in health and schizophrenia. PLoS One 8:e72351
Ledberg, Anders; Montagnini, Anna; Coppola, Richard et al. (2012) Reduced variability of ongoing and evoked cortical activity leads to improved behavioral performance. PLoS One 7:e43166
Carver, Frederick W; Elvevag, Brita; Altamura, Mario et al. (2012) The neuromagnetic dynamics of time perception. PLoS One 7:e42618

Showing the most recent 10 out of 17 publications