The PI discovered the first metastasis suppressor gene, Nm23. Basic and translational research has investigated the role of Nm23 in the regulation of tumor metastasis. Eleven transfection studies have documented that overexpression of Nm23 in various tumor cell lines resulted in a 50-90% decrease in tumor metastatic potential in vivo. The mechanism of Nm23 suppression of metastasis is likely complex. Previous work has demonstrated a histidine protein kinase activity for Nm23 and identified Ksr and disruption of the Erk signaling pathway as substrates. Another potential mechanism of action of Nm23 is through binding to other proteins. This project asked, in an unbiased manner, which proteins bind to a Flag tagged Nm23-H1 and -M1 in vitro and in vivo. Murine 4T1 cells were implanted in the mammary fat pad (mfp), a primary tumor was removed 10 days later, and metastases were evident in spleen, liver, lung and lymph nodes eight weeks post-injections. Transfection of 4T1 cells with Nm23-H1 and -M1 inhibited metastasis to the liver by 69% and 75%, respectively. In collaboration with Dr. Tim Veenstra Nm23-H1 co-immunoprecipitating proteins have been identified from from 4T1 cells in vitro, primary in vivo tumors and metastases. A previously undisclosed interaction of Nm23 and Ezrin has been validated. Ezrin links the cytoskeleton with signaling complexes and could exert multiple effects on the metastatic process. Co-immunoprecipiations have been validated, and the Ezrin binding site for Nm23 identified. Overexpression of the N- and C-terminal pieces of Ezrin have shown varying effects on Nm23 binding and in vitro motility. In vivo experiments will commence. Gelsolin is another new validated Nm23 binding protein. The interaction of Nm23 and Gelsolin only occurs in cell lines with relatively high levels of Nm23 expression, a trend not previously observed. The interaction of Nm23 and Gelsolin has been demonstrated to influence actin dynamics, a potential mechanistic explanation for Nm23's anti-metastatic effects. One of the potential avenues to """"""""drug"""""""" a suppressor gene is to identify inverse correlates of its expression. The lysophosphatidic acid receptor (LPA1), a G-protein coupled receptor for the serum lysophosphatidic acid (LPA) was found to be inversely related to Nm23 expression in cell lines, human breast tumors, and knock-out animal tissues. Forced re-expression of LPA1 overcame Nm23 suppression of tumor cell motility in vitro and metastasis in vivo. We hypothesized that an inhibitor of LPA1 would act as a metastasis suppressor and have preclinically validated Debio 0719. Administration of 0719 to animals injected into the mammary fat pad with murine 4T1 cells had no effect on primary tumor size. After surgical removal of the primary tumor, metastasis in the lymph nodes, lungs and liver was quantified 10 weeks post-injection. 0719 induced a significant suppression of metastasis in all sites. Confirmatory experiments showed a non-significant effect of 0719 on MDA-MB-231T human breast tumor growth in the mammary fat pad, but a significant inhibition of lung colonization after tail vein injection. Analysis of tissue from vehicle and 0719 treated animals showed that: (1) proliferation measured by Ki67 staining was high and equivalent in primary tumors treated with vehicle or 0719, but was reduced in lung and liver metastases treated with 0719;(2) similar trends were observed in pErk staining;(3) the opposite trend was osberved for p-p38 staining- no difference was observed in primary tumors, but 0719 treated lung and liver metastases exhibited higher levels of expression than vehicle controls. The data indicate that 0719 induced site specific dormancy in metastasis, a novel indication for a drug to date. The mechanism of metastatic dormancy is under investigation. These data, to our knowledge, represent the first drug candidate to induce metastatic dormancy. A manuscript describing this project is submitted for publication. In a high risk, high impact effort, I have collaborated with Dr. George Sledge to identify inverse expression correlates for multiple metastasis suppressor genes, not just Nm23. Using a gene expression analysis of siRNA knockdown of 19 metastasis suppressors, fifteen genes have been identified that are each inversely correlated to at least five, and up to eighteen metastasis suppressors. This effort is expected to lead to the identification of new genes mediating metastatic colonization, and new preventives and therapeutics.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Cancer Institute Division of Clinical Sciences
Zip Code
Khan, Imran; Steeg, Patricia S (2018) Metastasis suppressors: functional pathways. Lab Invest 98:198-210
Khan, Imran; Steeg, Patricia S (2018) The relationship of NM23 (NME) metastasis suppressor histidine phosphorylation to its nucleoside diphosphate kinase, histidine protein kinase and motility suppression activities. Oncotarget 9:10185-10202
Steeg, Patricia S (2016) Targeting metastasis. Nat Rev Cancer 16:201-18
Hsu, Tien; Steeg, Patricia S; Zollo, Massimo et al. (2015) Progress on Nme (NDP kinase/Nm23/Awd) gene family-related functions derived from animal model systems: studies on development, cardiovascular disease, and cancer metastasis exemplified. Naunyn Schmiedebergs Arch Pharmacol 388:109-17
Zimmer, Alexandra S; Steeg, Patricia S (2015) Meaningful prevention of breast cancer metastasis: candidate therapeutics, preclinical validation, and clinical trial concerns. J Mol Med (Berl) 93:13-29
Marino, Natascia; Collins, Joshua W; Shen, Changyu et al. (2014) Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines. Clin Exp Metastasis 31:771-86
Brabletz, Thomas; Lyden, David; Steeg, Patricia S et al. (2013) Roadblocks to translational advances on metastasis research. Nat Med 19:1104-9
Spano, Daniela; Marshall, Jean-Claude; Marino, Natascia et al. (2013) Dipyridamole prevents triple-negative breast-cancer progression. Clin Exp Metastasis 30:47-68
Marino, Natascia; Marshall, Jean-Claude; Collins, Joshua W et al. (2013) Nm23-h1 binds to gelsolin and inactivates its actin-severing capacity to promote tumor cell motility and metastasis. Cancer Res 73:5949-62
Marino, Natascia; Woditschka, Stephan; Reed, L Tiffany et al. (2013) Breast cancer metastasis: issues for the personalization of its prevention and treatment. Am J Pathol 183:1084-95

Showing the most recent 10 out of 26 publications