Disseminated candidiasis primarily targets the kidneys and brain in mice and humans. Damage to these critical organs leads to the high mortality associated with such infections, and invasion across the blood-brain barrier can result in fungal meningoencephalitis. Candida albicans can penetrate a brain endothelial cell barrier in vitro through transcellular migration, but this mechanism has not been confirmed in vivo. MRI using the extracellular vascular contrast agent gadolinium diethylenetriaminepentaacetic acid demonstrated that integrity of the blood-brain barrier is lost during C. albicans invasion. Intravital two-photon laser scanning microscopy was used to provide the first real-time demonstration of C. albicans colonizing the living brain, where both yeast and filamentous forms of the pathogen were found. Furthermore, we adapted a previously described method utilizing MRI to monitor inflammatory cell recruitment into infected tissues in mice. Macrophages and other phagocytes were visualized in kidney and brain by the administration of ultrasmall iron oxide particles. In addition to obtaining new insights into the passage of C. albicans across the brain microvasculature, these imaging methods provide useful tools to study further the pathogenesis of C. albicans infections, to define the roles of Candida virulence genes in kidney versus brain infection and to assess new therapeutic measures for drug development.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIASC009173-26
Application #
8938401
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
26
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Clinical Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Navarathna, Dhammika H M L P; Pathirana, Ruvini U; Lionakis, Michail S et al. (2016) Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis. PLoS One 11:e0164449
Navarathna, Dhammika H; Roberts, David D; Munasinghe, Jeeva et al. (2016) Imaging Candida Infections in the Host. Methods Mol Biol 1356:69-78
Navarathna, Dhammika H M L P; Stein, Erica V; Lessey-Morillon, Elizabeth C et al. (2015) CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis. PLoS One 10:e0128220
Pendrak, Michael L; Roberts, David D (2015) Hbr1 Activates and Represses Hyphal Growth in Candida albicans and Regulates Fungal Morphogenesis under Embedded Conditions. PLoS One 10:e0126919
Navarathna, Dhammika H M L P; Munasinghe, Jeeva; Lizak, Martin J et al. (2013) MRI confirms loss of blood-brain barrier integrity in a mouse model of disseminated candidiasis. NMR Biomed 26:1125-34
Navarathna, Dhammika H M L P; Lionakis, Michail S; Lizak, Martin J et al. (2012) Urea amidolyase (DUR1,2) contributes to virulence and kidney pathogenesis of Candida albicans. PLoS One 7:e48475
Martin-Manso, Gema; Navarathna, Dhammika H M L P; Galli, Susana et al. (2012) Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis. PLoS One 7:e48775
Peterson, Alexander W; Pendrak, Michael L; Roberts, David D (2011) ATP binding to hemoglobin response gene 1 protein is necessary for regulation of the mating type locus in Candida albicans. J Biol Chem 286:13914-24
Navarathna, Dhammika H M L P; Das, Aditi; Morschhauser, Joachim et al. (2011) Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2. Microbiology 157:270-9
Pendrak, Michael L; Roberts, David D (2011) Ribosomal RNA processing in Candida albicans. RNA 17:2235-48

Showing the most recent 10 out of 12 publications