During this period, the NCGC has conducted a medicinal chemistry campaign to explore the structure-activity relationships of the lead chemotypes, in an effort to further improve their potencies and chemical properties. As a center, the NCGC has fostered and maintained over 110 active collaborations with both NIH and extramural investigators, facilitating drug discovery efforts across the entire spectrum of human disease. These efforts have led to dozens of high-throughput screens and a number of medicinal chemistry campaigns to further improve on screening hits, providing our collaborators and the general research community with publications and a variety of promising small molecule probes and leads. In addition, the NCGC has worked to advance a number of informatic initiatives to make better use of existing drug and disease target information and provide the general public with easily accessible resources, further catalyzing the development of new therapies for human disease.
Mazzulli, Joseph R; Zunke, Friederike; Tsunemi, Taiji et al. (2016) Activation of ?-Glucocerebrosidase Reduces Pathological ?-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci 36:7693-706 |
Aflaki, Elma; Borger, Daniel K; Moaven, Nima et al. (2016) A New Glucocerebrosidase Chaperone Reduces ?-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism. J Neurosci 36:7441-52 |
Zhu, Dongqing; Wu, Stephen; Carterette, Ben et al. (2014) Using large clinical corpora for query expansion in text-based cohort identification. J Biomed Inform 49:275-81 |
Aflaki, Elma; Stubblefield, Barbara K; Maniwang, Emerson et al. (2014) Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs. Sci Transl Med 6:240ra73 |
Wieland, Mark L; Wu, Stephen T; Kaggal, Vinod C et al. (2013) Tracking health disparities through natural-language processing. Am J Public Health 103:448-9 |