Significant progress has been made in the rational design of immunogens for an HIV vaccine. Atomic-level structures of viral surface proteins in key functional states, or in complex with neutralizing antibodies, reveal important viral epitopes, providing targets for antibody elicitation. Structure-based computational methods can increase the efficiency, accuracy, and likelihood of success for immunogen design efforts. Specifically, through structural analysis, manipulation, and redesign, we expect a variety of computational techniques to be applied to generate immunogens that focus the immune response: (1) away from undesirably immuno-dominant regions; and (2) towards specific target epitopes. Such rationally designed immunogens are thus expected to enable the elicitation of broadly neutralizing antibodies capable of neutralizing a diverse range of HIV-1 isolates. We also planned to use computational algorithms to improve antibody properties, including enhancing neutralization potency and solubility, and reducing polyreactivity and immunogenicity, for therapeutic use
Showing the most recent 10 out of 26 publications