The Chromosome Pathology Unit (CPU)was set up in 2010 to fulfill the need in the """"""""in house"""""""" laboratory FISH tests required to support clinical trials at NCI. The official CAP accreditation and CLIA certification has been accomplished by the CPU team in November 22, 2010. From January 2011 the Lab started receiving clinical cases for FISH testing. The CPU performed more than 750 tests since its opening. This includes FISH assay for probe validation (335 tests), collaboration with LP and other NIH researchers (165 tests), and over 240 clinical tests that has been performed since opening clinical service in November 2010. FISH diagnostics are an integral part of the Pathology molecular diagnostics currently offered by the Lab of Pathology. The sensitivity and specificity of FISH diagnostics was found to be near 100% in recent reports of CAP that puts them in front line among other available tests based on PCR and immunohistochemistry that have a long-known specificity problem. The Chromosome Pathology Unit (CPU) in the Laboratory of Pathology performs Fluorescence In Situ Hybridization (FISH) assays on formalin-fixed paraffin-embedded (FFPE) tissues to support active clinical trials at the NCI and NIH. The demand for this testing is high;the CPU receives orders for FISH tests on clinical tumor samples daily, and currently supports 17 clinical trials at the NCI. That includes requests from the entire community of CCR investigators: Molecular Oncology Branch, Surgery Branch, Office of the Director, Pediatric Oncology Branch, Neuro-Oncology Branch, Urologic Oncology Branch. The active test menu includes FISH assays for clinically significant chromosomal translocations and amplification events in solid tumors and hematologic malignancies. The developed/ validated tests include Her-2 amplification in Breast, Lung, and GI tract cancer, cmyc translocation in Burkitt and Diffuse Large B Cell Lymphoma, BCL2 translocation in Follicular Lymphoma, 1p/19q deletion tests for brain tumors, ALK translocation in lung cancer and inflammatory myofibroblastic tumors, PDGFR and PIK3A amplification in lung cancer, NTRK1 amplification in thymic tumors, TFE-3 translocation in renal tumors, alveolar soft part sarcoma, EWSR1/FLI1 and FKHR translocations in pediatric tumors (Ewing's sarcoma and Rabdomyosarcoma), etc. In addition, the CPU is currently developing and validating ten new FISH tests for additional frequent chromosomal abnormalities in cancers that have been requested by NCI investigators. Among the tests in the pipeline are FGFR1, cMET amplification in lung cancer, ERG translocation in prostate cancer, Urovision (Abbott) for the detection of altered cells in bladder cancer, The Unit has been equipped as state-of-the art laboratory that includes a new Zeiss epifluorescence microscope with the ApoTome feature that allows FISH analysis and imaging of thick tissue sections, SKY-cube for spectral karyotyping - a modern tool for the detection of chromosomal translocations in cancer cells and various hereditary syndromes. All small equipment to measure the DNA quantity, run PCR to validate the FISH data, the CO2 incubator to grow cells were purchased as well.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Clinical Support Services Intramural Research (ZID)
Project #
1ZIDBC011349-02
Application #
8350196
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2011
Total Cost
$830,915
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Mamessier, Emilie; Song, Joo Y; Eberle, Franziska C et al. (2014) Early lesions of follicular lymphoma: a genetic perspective. Haematologica 99:481-8
Nicolae, A; Xi, L; Pittaluga, S et al. (2014) Frequent STAT5B mutations in ?? hepatosplenic T-cell lymphomas. Leukemia 28:2244-8
Arnold, Michael A; Ballester, Leomar Y; Pack, Svetlana D et al. (2014) Primary subcutaneous spindle cell Ewing sarcoma with strong S100 expression and EWSR1-FLI1 fusion: a case report. Pediatr Dev Pathol 17:302-7
Zhuang, Zhengping; Frerich, Jason M; Huntoon, Kristin et al. (2014) Tumor derived vasculogenesis in von Hippel-Lindau disease-associated tumors. Sci Rep 4:4102
Mardekian, Stacey K; Gandhe, Ashish; Miettinen, Markku et al. (2014) Two Cases of Spinal, Extraosseous, Intradural Ewing's sarcoma/Peripheral Neuroectodermal Tumor: Radiologic, Pathologic, and Molecular Analysis. J Clin Imaging Sci 4:6
Zhang, Chao; Yang, Andrew I; Vasconcelos, Lucas et al. (2014) Von hippel-lindau disease associated pulmonary carcinoid with cranial metastasis. J Clin Endocrinol Metab 99:2633-6
Sadri, Navid; Barroeta, Julieta; Pack, Svetlana D et al. (2014) Malignant round cell tumor of bone with EWSR1-NFATC2 gene fusion. Virchows Arch 465:233-9
Li, Hongzhen; Rodriguez-Canales, Jaime; Liu, Wenli et al. (2013) Deletion of the olfactomedin 4 gene is associated with progression of human prostate cancer. Am J Pathol 183:1329-38
Miettinen, Markku; Wang, Zengfeng; Sarlomo-Rikala, Maarit et al. (2013) ERG expression in epithelioid sarcoma: a diagnostic pitfall. Am J Surg Pathol 37:1580-5
Aung, Phyu P; Ballester, Leomar Y; Abdullaev, Zied et al. (2013) ER/PR positive epidermotropic primary cutaneous eccrine carcinoma as a cutaneous manifestation of MEN 2B. J Am Acad Dermatol 69:e310-2

Showing the most recent 10 out of 13 publications