In universities with large science and engineering programs, the introductory calculus-based physics course plays a central role in the education of very large numbers of students who will become scientists and engineers. Despite repeated calls from the physics community for improvement and modernization of this introductory physics course, the content and structure of the traditional course taught at most such large institutions has changed very little in the past fifty years. Although science and engineering universities often play a lead role in setting the standards for courses taught at other institutions, the large enrollment in their introductory courses, and the involvement of a large number of research faculty and academic support staff, has made it difficult to implement substantive curricular changes. Recently three large universities (NC State, Purdue, and Georgia Tech) have begun the process of implementing the Matter & Interactions curriculum, which was initially developed at Carnegie Mellon University.

Matter & Interactions is a calculus-based introductory physics curriculum in which twentieth century physics is integrated as a central part of the curriculum, in which a small set of fundamental principles are emphasized and used as the starting point for all analyses, and in which computation is an integral part of the course. The collaborative work in this project, focused on facilitating the implementation and on widening the base of dissemination, involves creating supporting infrastructure and activities, studying and documenting the changes and adaptations necessary to make the curriculum work well at different institutions, assessing the impact of this curriculum on both students and faculty, and working on further improvements to the instructional materials used by students. Workshops and working group meetings will initially involve participants from the three institutions; in subsequent years teams from other interested institutions are participating.

Intellectual Merit: Research and development in this project focuses on documenting and studying in detail the issues that arise, as well as carrying out the adaptation and customization necessary to implementing a reform curriculum at different large institutions. The project is also studying student learning in the context of this curriculum, and identifying and remedying deficiencies in the instructional materials themselves. Documenting the process of dissemination on this scale can inform future large-scale content reforms, both in physics or in other physical science and engineering disciplines. The existing body of research in physics education does not cover some of the central concepts and skills students in this new curriculum need to acquire, so that continued research on student learning is also important. The involvement of nationally known cognitive scientists brings important expertise and a different perspective to this research.

Broader Impact: None of the previous attempts to reform the content and emphasis of the introductory university-level calculus-based physics course have achieved long-term and broad institutionalization, despite the excellence of the content of textbooks such as the Feynman Lectures and the Berkeley Physics series. The importance of contemporary concepts and models is even more marked now than it was in the past, because science and engineering students need this background to work on contemporary problems such as the design of new conducting materials; fast, high density data storage and retrieval; new communication technologies; nanoscience and nanotechnology; and computer modeling of extremely complex systems, including climate and geophysical phenomena. NC State, Purdue, and Georgia Tech are large and highly visible universities with strong science and engineering programs. Effective implementation of an innovative curriculum at these institutions can inspire other large institutions to consider similar reforms. Smaller institutions may not need to make use of all of the materials and structures developed by this project, but much of the work is producing materials and methods also useful in institutions in which teaching is done on a smaller scale.

Agency
National Science Foundation (NSF)
Institute
Division of Undergraduate Education (DUE)
Type
Standard Grant (Standard)
Application #
0618504
Program Officer
Duncan E. McBride
Project Start
Project End
Budget Start
2006-10-01
Budget End
2012-09-30
Support Year
Fiscal Year
2006
Total Cost
$997,047
Indirect Cost
Name
North Carolina State University Raleigh
Department
Type
DUNS #
City
Raleigh
State
NC
Country
United States
Zip Code
27695