The broader impacts of this RAPID project will provide an effective means to control and manage the spread of coronavirus disease (COVID-19) originating from non-biological objects. This effort will lead to rapid development and testing of a new technology to be used against coronaviruses. The current COVID-19 pandemic has generated worldwide awareness for the need to decontaminate the environment and to reduce the risk of transmission of the virus. As SARS-CoV-2 (the virus that causes COVID-19) was newly introduced into the human realm, uncertainty remains regarding the virus's spread and ways of decontamination. It has been reported that coronaviruses might survive over three days on common materials such as plastics, ceramics, glass and stainless steel. Cleaning and disinfection of environmental surfaces are important for infection prevention and control of healthcare-associated infections. This includes requirements for surface disinfection, airborne virus decontamination and skin decontamination.
The proposed RAPID project will advance the development of Cold Adaptive Atmospheric Plasma Decontamination as an efficient approach for disinfection. The project will develop a disinfection system based on cold adaptive atmospheric plasma (CA2P), in combination with rapid detection of the contamination on these surfaces. The proposed concept is an adaptive non-thermal plasma system. This plasma-based system will be capable of rapidly scanning for viral colonies on the surface and simultaneously directing the CA2P beam for viral kill. The system will also be tested for treatment of airborne viruses. Compared to current disinfection methods based on wet chemistry (biocidal chemicals), the proposed CA2P technique would not cause corrosion of materials nor create toxic chemicals.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.