Numerous studies over the past few decades have shown that submarine groundwater discharge (SGD) transports significant quantities of nutrients to estuaries and nearshore oceans worldwide. So far, none of the geochemical and hydrological studies of SGD have demonstrated a clear ecological role. At the same time, studies of microalgal community dynamics have suggested, but not verified, that SGD is an important determinant of community structure. We thus have neither thorough SGD investigations with inferences about ecological responses nor detailed observations of microalgae with only an inferred linkage to SGD. Attempting to assess the role of SGD on microalgal dynamics is complicated by two factors. First, discharge occurs through the benthos, which in near-shore waters is the niche inhabited by benthic microalgae. The microphytobenthos (MPB) can be present at densities orders of magnitude higher than the phytoplankton and have repeatedly been shown to alter nutrient efflux. The role of the MPB as a sink for nutrients will depend on their growth rates, which are in turn largely driven by temperature and light availability. The second complicating factor is that SGD can be highly episodic and its nutrient content very variable. The effect of SGD on the phytoplankton assemblage may be due to nutrient delivery and/or to dilution (reduction in competition and grazing pressure) and altered residence times. The time-scales of SGD and community response are difficult to assess by standard sampling methods.

This project will to investigate the link between SGD and microalgal dynamics in Little Lagoon, Alabama, a model system for such a study. In contrast to most near-shore environments, it is fully accessible; has no riverine inputs; and is large enough to display ecological diversity (c. 14x 0.75 km) yet small enough to be comprehensively sampled on appropriate temporal and spatial scales. The PIs have previously demonstrated that the lagoon is a hot-spot for toxic blooms of the diatom Pseudo-nitzchia spp that are correlated with discharge from the surficial aquifer. This project will use state-of-the-art techniques to assess variability in SGD, the dependence of benthic nutrient fluxes on MPB abundance and productivity, and the response of the phytoplankton to nutrient enrichment and dilution. The work will integrate multiple temporal and spatial scales and will demonstrate both the relative importance of SGD vs. benthic recycling as a source of nutrients, and the role of SGD in structuring the microalgal community.

Broader Impacts: Although this project is geographically restricted, its findings should be far reaching. Groundwater-born nutrient enrichment is now normal where agriculture occurs over porous soils, including in New England, Maryland/Delaware, Florida, Alabama, likely Texas, Yucatan (Mexico), California, Korea, Japan, and the Netherlands etc. The likely dependence of coupling between SGD and phytoplankton composition is likely to be driven by temperature and the frequency/intensity of precipitation, both of which will change in the Northern Hemisphere, according to the IPCC. The phenomenon therefore has wide application. This project will provide training opportunities for three Ph.D. students and the findings will be incorporated into several courses: Physiological Ecology of Microalgae (MacIntyre), Global Biogeochemical Cycles (Mortazavi) and Environmental Radiochemistry (Burnett). Last, this project will build on the PI's active partnership with local citizens, members of the Little Lagoon Preservation Society (LLPS), in bi-weekly monitoring of water quality and microalgal community composition. Members of the PI's lab have presented talks at each of LLPS' quarterly meetings for the past 2 years. These are attended by local stakeholders, local and state political representatives, and members of the press, and have proved to be an effective means for outreach and education on eutrophication, HABs and hypoxia. The relationship has been reported on extensively in the local press and praised as exemplary in an editorial in the region's largest newspaper.

Agency
National Science Foundation (NSF)
Institute
Division of Ocean Sciences (OCE)
Type
Standard Grant (Standard)
Application #
0961994
Program Officer
David L. Garrison
Project Start
Project End
Budget Start
2010-03-01
Budget End
2010-12-31
Support Year
Fiscal Year
2009
Total Cost
Indirect Cost
Name
Marine Environmental Sciences Consortium
Department
Type
DUNS #
City
Dauphin Island
State
AL
Country
United States
Zip Code
36528