This project is one of two components of a US-led international program, Overturning in the Sub-polar North Atlantic (OSNAP), designed to provide a continuous record of the full-water column, trans-basin fluxes of heat, mass and freshwater in the subpolar North Atlantic. The OSNAP observing system consists of two legs: one extending from southern Labrador to the southwestern tip of Greenland across the mouth of the Labrador Sea (OSNAP West), and the second from the southeastern tip of Greenland to Scotland (OSNAP East). The observing system also includes subsurface floats (OSNAP Floats) in order to trace the pathways of overflow waters in the basin and to assess the connectivity of currents crossing the OSNAP line. The location of the OSNAP East and West legs purposefully melds with a number of long-term observational efforts in the North Atlantic: the Canadian repeat hydrography program in the Labrador Sea; the German Labrador Sea western boundary array at 53°N; the global Ocean Observatories Initiative node to be placed in the southwestern Irminger Sea; the repeat hydrographic sections across the Irminger and Iceland basins; and the Ellett line in the Rockall region. Substantial international collaboration has been garnered for OSNAP, including measurement contributions from the UK, Germany, the Netherlands and Canada. Importantly, this proposed observing system, in conjunction with the RAPID/MOCHA array at 26°N and the European Union NACLIM program at Nordic Seas overflows, will provide the first comprehensive three-dimensional measure of the Atlantic Meridional Overturning Circulation (AMOC) and provide a means to evaluate inter-gyre connectivity in the North Atlantic.

This collaborative project will implement the eastern section of OSNAP in partnership with the U.K. and the Netherlands. Measurements along the composite trans-basin section will consist of a mix of moorings and gliders that will allow for the measure of the net overturning rate in the eastern North Atlantic sub-polar gyre resulting from the Denmark Strait and Iceland-Scotland overflows, the subsequent entrainment into these overflows, the net inflow of subtropical waters across the OSNAP East line, the local (i..e., within the Irminger and Iceland basins) transformation of subtropical waters, and the freshwater transport from the Arctic into the Irminger basin via the East Greenland Current.

Intellectual Merit: For decades oceanographers have understood the AMOC to be highly susceptible to changes in the production of NADW. However, a number of recent observational and modeling studies have called into question this supposition, as more has been learned about the role of wind forcing in AMOC variability. Thus, the overall goal of this project is to establish an observing system that will determine the role that intermediate and deep water mass formation and basin-scale wind forcing play in the overturning and associated poleward heat transport, assessments that currently have only been theorized and modeled, but not observed.

Broader Impact: In January of 2007, the US Joint Subcommittee on Ocean Science and Technology identified the study of the AMOC as one of four near-term priorities in the US Ocean Research Priorities Plan. This proposed work directly addresses that priority via a design of an AMOC observing system in the sub-polar North Atlantic. While a primary motivation for studying AMOC variability comes from its potential impact on the climate system, additional motivation for the measure of the heat, mass and freshwater fluxes in the sub-polar North Atlantic arises from their potential impact on marine biogeochemistry and the cryosphere. There is growing evidence that the ocean has played (and is playing) a role in the reduction of Arctic sea ice and in mass loss from the Greenland Ice Sheet - both of which have been attributed to changes in the poleward heat transport by the ocean. Also, the ocean plays an essential role in the carbon cycle by moderating increasing atmospheric concentrations of carbon dioxide through the sequestration of anthropogenic carbon in the deep ocean. Variability in the AMOC is expected to impact this sequestration. Broader impacts also include the training of five graduate students in seagoing operations and in the processing and analysis of observational data. The graduate students will have an opportunity to collaborate with their international counterparts through virtual meetings and in-person visits and will be mentored by multiple advisors.

This research award includes support for a Science Across Virtual Institutes (SAVI) component that is co-funded by NSF's Office of International and Integrative Activities.

Agency
National Science Foundation (NSF)
Institute
Division of Ocean Sciences (OCE)
Application #
1258823
Program Officer
Baris Uz
Project Start
Project End
Budget Start
2013-09-01
Budget End
2019-08-31
Support Year
Fiscal Year
2012
Total Cost
$3,717,869
Indirect Cost
Name
Woods Hole Oceanographic Institution
Department
Type
DUNS #
City
Woods Hole
State
MA
Country
United States
Zip Code
02543